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FOREWORD

The final report for the joint NASA/ASI study consists of three sections:

1. A summary of the objectives, accomplishments, and conclusions of the

research performed by the Center for Space Research and the Agenzia

Spatiale Italiana,

2. Appendix A, which describes in detail the comprehensive simulation and

covariance analysis of the Lageos-3 experiment which was performed by

the Center for Space Research under NASA Grant No. NAGW-1330,

3. Appendix B, which is bound under separate cover and which describes the

various investigations performed by the members of the Agenzia Spatiale

Italiana concerning selected aspects of the Lageos-3 mission.

The investigation teams appreciate the numerous stimulating discussions held

with the Science Advisory Group and are indebted to NASA and ASI for their

support of this investigation.
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Measuring the Lense-Thirring Precession Using

A Second Lageos Satellite

B. D. TAPLEY

Center for Space Research, The University of Texas at Austin, Austin, Texas U.S.A.

I. CIUFOLINI

IFSI-CNR, Consiglio Nazionale delle Ricerche, Frascati, Italy

INTRODUCTION

The procedures by which space measurements can contribute to the understanding of

gravitation, as one of the four fundamental forces in the universe, is documented in the National

Research Council report, Strategy for Space Research in Gravitational Physics in the 1980's.

The report, which was prepared by the Space Science Board (SSB) Committee on Gravitational

Physics (CGP) in 1981, identifies the measurement of the dragging of inertial frames by a rotating

mass as the highest priority experiment in the class of experiments requiring a dedicated

spacecraft.

The dragging of inertial frames is a consequence of Einstein's General Relativity [Misner et

a/., 1973]. In this theory, a nonrotating, spherical mass produces the standard and well-tested

Schwarzschild field. If the sphere is rotating, then the gravitomagnetic field occurs, whose

strength, in the weak field and slow motion limit, is proportional to the angular velocity of the

sphere. In the weak field approximation of the Kerr metric, the gravitomagnetic field is given by

[Thorne et al., 1986]:

where _- , 0,- -7 is the gravitomagnetie or Lense-Thirring potential, and 7is the angular



momentumof the central body. _

Oersted [1820] proved that electric currents produce magnetic fields; general relativity

predicts that mass currents produce gravitomagnetic fields. The importance of observing the

effect of the gravitomagnetic field can be summarized as follows. First, this field can be

considered as a "new" field of Nature, which is analogous to the magnetic field in

electrodynarnics, and has not been directly measured previously. Second, the measurement of the

gravitomagnetic field will provide experimental support of the general relativistic formulation of

the Mach principle: that the local inertial frames are determined or at least influenced by the

mass-energy distribution and currents in the universe [Wheeler, 1988]. Finally, the

demonstration of this effect will be of significant importance in high-energy asu'ophysics. Some

theories of energy storage, power generation, jet formation and jet alignment of quasars and

active galactic nuclei are in fact based on the existence of the gravitomagnetic field of a

supermassive black hole [Thorne et al., 1986].

The dragging of the orbital plane (and the orbital angular momentum) of a test particle

orbiting in the field of a rotating body is included among the various effects due to the

gravitomagnetic field. In the case of central force motion, the orbital plane can be thought of as

an enormous gyroscope which is dragged in the direction of rotation of the cenu'al body. This

dragging of the whole orbital plane is described by the formula for the rate of change of the

longitude of the node, discovered by Lense and Thirring [1918]:

_L-rffi 2J
a3 (l_e2)aJ2

where a is the satellite semimajor axis, e is the eccentricity, and J the angular momentum of the

central body. This fact is significant when evaluating concepts for using space-based

measurements to observe the Lense-Thirring nodal drag.
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The report prepared by the SSB/CGP identifies two possible ways of measuring the frame-

dragging effect. They are:

1. Placing a gyroscope in Earth orbit and monitoring the precession of its spin due to the

Earth's rotation.

2. Placing two counter-rotating, drag-free satellites in polar orbit to monitor the relative

precession of their orbital angular momentum vectors.

The current approach for measuring the frame-dragging or Lense-Thirring effect has been based

on the orbiting gyroscope approach and is to be realized by the Gravity Probe B mission [Everin

et al., 1974; Parkinson et al., 1987]. Although the SSB/CGP report notes the need for an

independent confirmation of the effect for a measurement of this importance, the counter-orbiting

polar satellite approach was not given detailed consideration because of the apparent difficulty in

making the measurement and because of the cost implied in the need for two satellites and two

different launch vehicles.

Ciufolini [1986] proposed an additional method for measuring the induced Lense-Thirring

nodal precession using of a pair of non-polar, Earth-orbiting satellites. This approach took

advantage of the existing Lageos satellite (Lageos-l) [Cohen and Smith, 1985] by proposing a

new Lageos-type satellite (Lageos-3), which is:

1. Physically identical to Lageos-1,

2. Placed in an orbit with identical altitude and eccentricity and with an inclination

supplementary to the Lageos- 1 orbit, and

3. Tracked with satellite laser ranging (SLR).

This configuration was proposed as a means of eliminating the influence of errors in our

knowledge of the longitudinally independent part of the Earth's gravitational field on the

combined or additive nodal precession. For a single satellite, the errors in the Earth's gravity



field model cause orbit errors which mask the predicted precession due to the Lense-Thirring

effect. Since Lageos-1 is already in orbit, the dual Lageos satellite configuration has the

advantage of requiring the launch of a single comparatively inexpensive satellite, and the present

proposed plan calls for the program costs to be shared between the U.S. (NASA) and Italy

(Agenzia Spaziale Italiana (ASI)).

Further study of the concept has noted that the configuration has a number of additional

advantages; in particular, the lifetime of the passive Lageos satellites is predicted to be essentially

limitless (estimated as 500,000 years before reentry), allowing continual monitoring and

improvement in the determination of the frame-dragging effect. The potential for repeated

measurement of the Lense-Thirring effect allows the possibility of improving the measurement

accuracy. The accuracy with which the measurement can be made depends on the accuracy of

laser ranging systems and the accuracy of the models for the forces which act on the satellite.

The accuracy of both are improving steadily. The global SLR tracking system has undergone

substantial improvement during the last decade. The number of regularly operating sites exceeds

25 stations at present, with many of the best systems having single-shot range accuracies

approaching the one-cm level. Millimeter-level ranging technology is well underway toward

development. The force models on Lageos-1 have improved to the level where dynamically

continuous long-arc solutions over 12 years can be obtained. The rms of measurement fit

including both model and measurement errors is around the 5 cm level during the last few years.

(See Figure 1 and Figure 2 in Appendix A-1.)

The ability of the global SLR systems to range with accuracies at the 1 cm level has been

used to perform measurements of tectonic motion, through station coordinate determination at the

level of a few pans in 109 for monthly averages, and Earth orientation, with a precision of the

order 1-2 milliarcs_s for 3-day averages [Tapley et al., i985; Smith et al., 1985; Christodoulidis
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et al., 1985]. The SLR data have been used to obtain significant improvements in our knowledge

of the Earth's gravity field [Tapley et al., 1988b; Marsh et al., 1988; Christodoulidis et al., 1988;

Cheng et aL, 1989]. The feasibility of the proposed measurement of the Lense-Thirring

precession of the Lageos-1/Lageos-3 satellite configuration has been examined in the light of the

current maturity of the SLR tracking system.

Preliminary computatiorts by the Center for Space Research (CSR) aimed at demonstrating

the feasibility of the proposed relativity experiment, along with preliminary studies of several

important error sources by ASI [Bertotti and Ciufolini, 1988], produced positive results. Initial

error analyses [Ciufolini, 1987, 1988, 1989] predicted that a measurement of the Lense-Thirring

precession, with about a 10% aecuraey, should be possible for this important test of gravitational

physics. After reviewing the preliminary results, an ad hoe NASA committee established to

examine the proposed mission concluded that the initial studies did not consider several

important effects and that a more extensive study would be required to establish the feasibility of

the experiment.

In response to this conclusion, NASA and ASI formed study groups in May 1988 for the

purpose of performing a comprehensive analysis of the experiment and demonstrating the

feasibility through a comprehensive numerical simulation. A Lageos-3 Science Advisory Group

was formed to provide guidance for the two investigations. The membership of the Science

Advisory Group is given in Table 1. As shown in Table 2, four meetings with the Science

Advisory Group were held: an initial meeting to define the complexity of the force model effects

to be included, a second meeting to review the final simulation design and assess final decisions

on the force model, a third meeting to review the initial results from the analytic analysis and

numerical simulation of the experiment, and a final meeting to review the final results and

conclusions.

5



The objective of the research described in this document was to perform a complete

numerical simulation and error analysis for the proposed experiment with the objective of

establishing an accurate assessment of the feasibility and the potential accuracy of the

measurement of the Lense-Thirring precession. Consideration was given to identifying the error

sources which limit the accuracy of the experiment and proposing procedures for eliminating or

reducing the effect of these errors. Analytic investigations were conducted to study the effects of

major error sources with the objective of providing error bounds on the experiment. The study

was conducted as a joint effort by NASA and ASI, and the results obtained in the individual study

efforts are documented in Appendix A and Appendix B, respectively.

The benefits of a Lageos-3 mission are not restricted to tests of relativity. In the area of

geodynamics, the addition of Lageos-3 to the complement of other satellites tracked by SLR will

improve results in all of the applications currently in progress. These include crustal motion

monitoring, determination of gravity and tidal parameters, and of particular importance,

maintenance of reference frames and monitoring of Earth rotation. The same orbital symmetry

that allows the detection of the Lense-Thirring precession will improve substantially the

capability of SLR measurements to provide rapid service measurement of universal time (UT1).

The errors in the model for the tidal and nontidal time variations in the even zonal gravitational

potential of the Earth, oceans and atmosphere, which are the primary limitations on the long-

period accuracy of the UT1 determination using Lageos-1, are cancelled with the Lageos-

1/Lageos-3 satellite configuration.

OBJECTIVES OF THE STUDY

The primary goal of the study is to demonstrate through the analysis of realistic simulated

data that satellite laser ranging to two Lageos satellites, orbiting with supplemental inclinations,

collected for a period of 3 or more yeats, can be used to verify the Lense-Thirring precession. An
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ancillary objective is to develop a comprehensive covariance analysis for the solution. The

covariance analysis will establish the uncertainty in the estimate of the Lense-Thirring scale

parameter, L, due to errors in the SLR data and errors in the other aspects of the dynamical and

measurement model. In both numerical simulation and covariance analysis, it is important to

establish an accurate value for the expected magnitudes of the model uncertainties, as well as

their functional form. In establishing the error models and the technique used to translate these

errors into the predicted uncertainty in L conservative estimates were adopted to prevent undue

optimism in the error estimate.

In response to previous evaluations of the proposed experiment, both gravitational and

nongravitational forces, which contribute significant perturbations, were identified for detailed

consideration.The main pemlrbationsconsideredinthisstudyare:

• Neutraland chargedparticledrag,in particularinhomogeneitiesand anisotropiesin the

chargedparticledrag(fluctuatingpressuredue tochargedparticleprecipitationintheauroral

zones,systematiccharged particlecurrentsin the innerVan Allen beltand anisotropic

fluctuationsinfileresidualatmosphericdragdrivenby solaractivity),

• Thermal thrustinggeneratedfrom heatingby infraredoftheEarthradiationand thethermal

lagoftheLageos retroreflectors[Rubincam,1987],

• Thermal thrustingfrom there-emissionby thesatelliteofheatfrom theSun interactingwith

eclipsingby theEarth[$1abinaki,1988],

• Radiationpressuredue to theEarthalbedo,boththediffuseand specularcomponents,and

theeffectof thedirectEarthinfraredradiationpressure[RubincametaI.,1987],

• The periodic,secular,seasonaland stochasticvariationsintheEarth'sgravityfield.

The achievementof symmetry intheorbitofthe secondLageos satelliteisa criticalfactor,

and therangeof orbitalinjectionerrorthatcan be toleratedwas treatedasa specificparameterin

7



the study. The analysis also assessed the sensitivity of _e erro r in L to the expected deviation of

the injection from the condition of perfect symmetry. The results of this study will be used to

determine the feasibility of achieving the required accuracy with current launch vehicles.

Fimlly, the sensitivity of the accuracy of the estimate to the duration of the experiment was

evaluated. The analysis indicates that a duration of approximately three years is a minimum.

The temporal variation of the longitudinally independent components of the gravitational field,

due to Earth and ocean tides and atmospheric circulation, were found to be one of the more

important factors, and requires a long duration experiment to separate the effect of errors in these

models from the Leme-Thirring parameter.

INVESTIGATION RESULTS

Center for Space Research

The primary objectives of the CSR study were to use a complete numerical simulation of the

proposed experiment to demonstrate the experiment feasibility and to perform a comprehensive

covariance analysis to establish the accuracy of the experiment and the sensitivity to

measurement errors, dynamic model errors, and orbit injection conditions. In this study, the

dynamical effect of the gravitomagnetic interaction was modeled as a scaled perturbing

acceleration for each of the two satellites involved in the computation. The scaling parameter, L,

is modeled such that the prediction of general relativity will correspond to a value of L -- 1. In

the analysis of the simulated SLR tracking data, an estimate of the value of L and its uncertainty

was determined. The SLR data were generated using locations from a current set of globally

distributed tracking stations with simulated ranging errors modeled after actual SLR tracking

statistics. Range measurements to both satellites were combined in a simultaneous solution in

which the orbital parameters of both satellites, the value of L, and other common force and
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kinematic model parameters were estimated. The details of the experiment design and the

numerical simulations are given in Appendix A-1.

The primary model errors were identified as the geopotential, the solid Earth and ocean tides,

and the surface forces. An analysis of the Lageos- 1 range residuals from the latest CSR long-arc

8801 [Tapley et al., 1988a] was performed in order to evaluate the nature and magnitude of the

errors which remain in the current modeling of Lageos-type satellites. There was concern

expressed, initially, regarding the models for the surface forces, particularly those representing

the thermal effects that apply to Lageos-type satellites. Much of the effort in the preliminary

stages of this analysis was devoted to identifying and understanding the possible mechanisms

which can induce nongravitational forces on Lageos- 1 in order to be sure that these forces are not

critical to the Lense-Thirring measurement. In addition to quantifying the effect on the

semimajor axis and node, it was noted for the first time that the thermal thrusting has an

important effect on the orbit inclination [Center for Space Research, 1989].

Comparable attention was devoted to understanding the effects of the solid Earth and ocean

tides. The sensitivity to errors in the tide models will be reduced by performing the experiment

over a sufficiently long period of time, nominally three years, so that their effects will average

out. Tides or quasi-periodic atmospheric pressure variations whose periods (in a space-fixed

system) are close to the nodal periods of either Lageos- 1 or Lageos-3 could cause changes in the

satellite orbits that look like secular effects over the three-year experiment duration, but the

results of this study indicate that there is insufficient power in the tidal spectrum near these

critical resonance bands to seriously affect the measurement.

The numerical simulation was designed to emulate as closely as possible the procedure to be

used in the proposed experiment. Simulated laser range data were generated in a manner which

duplicated the distribution of the actual laser tracking of Lageos-1 during a three-year mission. In

9



the initial definition of the simulated experiment, there was concern expressed by the Science

Advisory Group that, if the analysts who would be processing the data processed a priori

knowledge of the true value for L and the other perturbed parameters, they would tend to be

biased in their choice of the parameters to be estimated. This concern was addressed by adopting

a blind simulation procedure in which the CSR analysts would not know the true value for any of

the approximately 1550 individual error sources, including the true value of L. The extensive

modifications to the orbit determination program, and the thorough testing required, resulted in

some delay in completing the simulation and providing the final report, but the resulting system

performed well and will provide a valuable simulation tool for future studies.

The results of the six blind solutions are summarized in Table 3, where the difference

between the CSR estimate and the true value of L is listed. The scatter of the simulation solutions

was 8%, and the mean of the differences between the estimate and true value of L was zero. In

comparison, a covariance analysis for each case, based on considering the effect of errors in the

non-estimated paperers similar to those included in the simulation, indicated that the 1--_

uncertainty in the estimate of L varied between 5 and 7%. The results are displayed graphically in

Figure 1, where each solution is shown with respect to the u'ue value and the size of the 95%

confidence interval as predicted by the consider-covariance analysis. The covariance analysis

could not consider the effect of the stochastic error sources and would be expected to predict a

smaller uncertainty; otherwise, the agreement between the simulation results and the covariance

analysis is remarkably good. The combination of the six simulations, supported by consistent

results from the consider error analysis, indicate that the Lense-Thirring precession should be

measurable at the 8% accuracy level. The fact that only one solution out of six deviated by as

much as 15% is entirely consistent with this error assessment.

J

D

m
I

em

I

m

I

l

D

i

m
Ill

Q

in

m

g

D

m
I

i
I

10 w

!



m

m

=

The simulationresultsincludetheeffectsof allmodeled errors,but theydo notallowone to

quantifythe contributionof theindividualsourcesof error.Thus, thecovarianceanalysiswas

necessaryin ordertoconstructthe errorbudget fortheLense-Thirringmeasurement which is

displayedin Table 4. The errorin the gravitationalmodel isthe primary contributorto the

overallerror.The constanterrorsinthemean valuesof theEarth'sgeopotentialand tidemodel

are expected to contribute about 4 to 5%. The effect of errors in the even zonal harmonics are

proportional to the size of the Lageos-3 orbit injection errors, with a conservative assessment of

3% for each 0.1 ° error in the inclination. The unmodeled thermal forces were found to cause a

little less than a 3% uncertainty, while the contribution of the errors in the model for the Earth

radiation pressure (reflected opdcal and reradiated infrared) was approximately 1%. The

uncertainty due to the remaining parameters was generally negligible. The various stochastic

errors not amenable to the consider analysis, particularly the seasonal variations in the

geopotendal, are conservatively estimated to contribute an additional 5%.

Further confidence in the experiment is obtained by evaluating the accuracy of the dynamic

model parameters recovered along with the Lense-Thirring parameters. The dynamic model

parameters which are likely to corrupt the Lense-Thirring parameter include GM of the Earth, the

J2, J3, J2, and J3 coefficients of the Earth's geopotential, the k 2 tide coefficient and the Lageos-I

and Lageos-3 solar reflectivides. As shown in Appendix A-l, Table 9 the values of these

parameters, recovered simultaneously with the Lense-Thirfing parameter, showed excellent

agreement with the values adopted for these parameters in the overall simulation. This illustrates

again the contention that the Lense-Thirdng parameter is uniquely separated from the other

dynamic model parameters in the case of satellites with supplementary inclinations.

An important concern in this analysis is whether any significant error source has been

ignored. It could be argued, for example, that the errors assumed for the thermal thrusts are

11



optimistic,since the existing model does not completely model the observed variations in Lageos

drag. However, even if the thermal forces were 100% larger than those assumed for this

investigation, an assumption that appears unlikely based on the existing analysis, the error

estimate increases from 8% to only 10%. While there are certainly significant systematic errors

remaining in the Lageos residuals, they can generally be explained by errors in the models for the

known physical effects, such as the year-to-year fluctuation in the seasonal changes of the Earth's

gravity field. These errors have been included in the 8% overall error estimate given in Table 4.

The thermal forces on the Lageos satellite represent essentially the limit of the forces that can be

affecting the satellite significantly. Ciufolini [1989] has examined a wide variety of lesser forces

and found that the maximum effects of those not already considered in this analysis were

generally much less than 1% of the Lense-Thirring precession. Since reasonable limits on the

known forces have been determined and used in this simulation, the existence of a large,

unsuspected force with a new physical mechanism must be considered very unlikely. A similar

argument applies to possible measurement errors which would be large enough, have just the

right time dependence, and be common to all stations over the three-year period. While such an

effect is impossible to rule out, it must be considered to be a remote possibility and should not be

included in a 1-o error estimate. It would appear that the 3-o error estimate of 24% would

adequately include the effect of such unlikely errors.

Agenzia Spatiale Italiana

The following discussion summarizes the main results of the study of the nongravitational

perturbations. The details of the analytical studies are given in Appendix B.

It is reasonably certain that neutral and charged particle drag explains part of the Lageos-1

semimajor axis decay. To study the effect on the node node, four cases were considered:
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1. The exosphere is co-rotating with the Earth,

2. The charged exosphere is rotating about the Earth's geomagnetic axis,

3. The worst ease, involving variations of the average particle drag, from essentially 0 to

approximately 5 x 10-12 m/s 2,

4. The worst case of charged particle drag, corresponding to high charging of the satellite

(sporadic, anomalous potentials of-600 Volt, once per orbit, for a few tens of seconds).

The result of the investigation is that, even in the most extreme conditions, the secular nodal drag

will never exceed a few tenths of a percent of the Lense-Thirring effect (Appendix B-1).

Regarding the thermal thrust due to anisotropic re-emission of Earth infrared radiation and

re-emission of solar radiation modulated by eclipses, this effect has been studied both by the ASI

group [Afonso et al., 1989] and by the CSR group [Center for Space Research, 1988, 1989]. In

the case of heating by the infrared radiation from the Earth, the ASI study found a maximum

secular nodal precession of 2% of the Lense-Thirring effect, corresponding tO a worst case for the

spin axis orientations of Lageos-1 and Lageos-3, one along the Earth spin axis and the other

perpendicular to it. In the case of heating by sunlight modulated by eclipses, the largest secular

and long periodic terms can be at most 1% of the Lense-Thirring effect, corresponding to the

worst values of some thermal parameters considered. These figures refer to the maximum effect

of thermal thrust; however,

1. The orientation and the rotation rate of the spin of Lageos- 1 and Lageos-3 can be measured

and modeled (see below), and

2. The knowledge of the thermal and optical properties can be substantially improved through

various measurements.

Therefore, according to formulas (8) and (20) of Appendix B-2, and because of partial

cancellation of the overall effect over a period of a few years, the sum of the unmodeled secular

13



nodaldrifts of Lageos-1 and Lageos-3 due to this effect should be less that 1% of the Lense-

Thirring effect.

Because of the importance of knowing the spin orientation and spin rate of Lageos-1 and

Lageos-3, to allow accurate modeling of the thermal thrust on laser-ranged satellites, the

rotational dynamics of Lageos-1 must be studied to determine the temperature anisotropy and the

ensuing radiation recoil effect. For this purpose, a model is proposed in Appendix B-3 for the

torques acting on Lageos-1 due to eddy currents and gravity gradients.

Concerning the Earth's albedo, the CSR and ASI investigations show that the error in the

Lense-_rring measurement, due to Earth-reflected radiation pressure on Lageos-1 and Lageos-

3, would not exceed a few percent of the gravitomagnetic effect. However, improvements are

achievable by modeling the Earth's albedo. Furthermore, many of the terms in the expression for

the nodal precession due to the Earth albedo are linearly dependent on cos I and therefore give,

for the two satellites, nodal precessions equal in magnitude but opposite in sign, thus

substantially reducing the uncertainty due to Earth's albedo.

Similar arguments can be applied to concerns about the direct radiation pressure on Lageos-

type satellites due to infrared radiation from the Earth.. On the basis of a paper by Sehnal [1981],

Ciufolini [1987] has pointed out that the main latitudinal effect is equal in magnitude but

opposite in sign for Lageos-1 and Lageos-3. Funhermore, the CSR group has shown that the

Lageos-1 secular nodal effect is much smaller than the value previously calculated by Sehnal

[1981], i.e., the total secular effect is _2 mas/year. Therefore, due to the small size of the effect

and the cancellation of the J2 part, the error in modeling the direct effect of Earth's infrared

radiation on the node is subsumdafiy negfi_ble.
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CONCLUSIONS

The following conclusions, drawn from the numerical and analytic investigations described in

Appendices A and B, are:

1. The results of a number of simulations and covariance analyses, including six blind tests

' which involved simulated data with a wide variety of unknown error sources, indicate that,

with a high level of confidence, two Lageos-type satellites in orbits with supplementary

inclinations can measure the Lense-Thirring precession of the satellite orbit planes with an

estimated precision of 8% (1 a). The 8% uncertainty is based on a conservative assessment

of the error in the parameters recovered in the numerical simulation and the uncertainties

assigned by a comprehensive covariance analysis. While tides, thermal forces and seasonal

variations of the gravity field are among the largest contributors to the uncertainty, no error

source exceeding 5% was identified. Since the error models adopted were generally

conservative, the actual accuracy of the recovery of the Lense-Thirring precession

parameter is likely to be better than 8%. With the development of improved models for the

geopotential and tides, which are the main sources of error, the accuracy of the

measurement will be improved.

2. Since the satellite lifetimes are essentially limitless, repeated measurements can be made in

successive three-year experiments. To the extent that the errors which limit the accuracy

are random, repeated measurements would lead to an increased accuracy.

3. The error in the Lense-Thirring precession recovery due to the nongravitational

perturbations, will not exceed a few percent of the Lense-Thirring effect. The primary

contributor to this error is the thermal thrust from Earth infrared radiation and from

sunlight plus eclipses and to uncertainties in the reflected and diffused Earth albedo. The

knowledge of the nongravitational perturbations can be improved by measurement of the

15
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.

thermal, optical and rotational parameters of Lageos-type satellites. This procedure will

substantially reduce the error due to incorrect modeling of these perturbations.

The ability to improve the lump-sum zonal contributions of geopotential error during the

estimation process will allow maximum allowable injection errors for Lageos-3 m be larger

than the 0.1" in inclination error originally specified. As shown in Appendix A-2, the

injection errors required to ensure that this effect contributes no more than a 1-o variation

of 3% is Aa < 30 km, Ae <0.2 and A/_< 0.12 °. These injection errors are easily attainable

with current satellite launch capabilities.

The secular, periodic, and stochastic time variations of the even zonals have been shown to

preclude any satellite combination other than the supplementary inclination approach.

Even if the constant part of the Earth's gravity field could be determined with sufficient

accuracy from a combination of historical and modem data from multiple satellites, the

time variations in the even zonals during the period of the experiment would also have to

be determined with a very high accuracy if the effect is to be modeled. However, with the

supplementary inclination for Lageos-1 and Lageos-3, the effect of the time variations in

the even zonals on the orbit nodes will cancel to a high degree of precision.
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TABLE 3. RESULTS OF LENSE-THIRRING SIMULATION BLIND ANALYSIS
m

m

True Value of UT/CSR Solution Estimated

Case L-T Scale Solution Difference Uncertain t3,

1 0.55 0.47 0.08 0.06*

2 1.38 1.32 0.06 0.06

3 0.08 0.02 0.06 0.05

4 0.86 0.83 0.03 0.07

5 1.83 1.98 -0.15 0.07

6 0.94 1.02 -0.08 0.07

m

w
E

m

m

m

m.

Mean of difference = 0.0 RMS of difference = 0.08
m

* 0.06 can interpreted as 6% of the nominal General Relativity prediction of 1.0 m
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TABLE 4: ESTIMATED ERROR BUDGET FOR LENSE-THIRRING MEASUREMENT

Geopotential (other than even zonals) + tides 5%

Earth radiation pressure 1%

Uncertainty in other relativistic effects 1 1%

Earth- and solar-induced thermal forces 2 3%

Even zonal geopotential (per 0.1" inclination injection error) 3 3%

Other errors (such as random and stochastic errors included
in simulation but not in covariance analysis) 4 5%

assuming 0.1" injection error or less

assuming 0.2" injection error

assuming 0.3" injection error

RSS Error

8%

10%

12%

w

v

w

Notes:

1) The only significant uncertainties are in the amount of geodesic (or de Sitter) precession and in

the exact value of the PPN parameter 7.

2)

3)

The effect of the solar heating was based on the conservative assumption that no modeling is
possible.

The result of 3% error per 0.1" inclination injection error assumes an equal influence of error in
the semimajor axis and eccentricity, but the bounds on the semimajor axis and eccentricity

injection errors are less demanding than the bounds on inclination. As a result, the predicted
effect on the Lense-Thirring estimate is considered to be conservative.

4) Consider-covariance analysis results were augmented by an additional 5% to account fox the effect
of time-correlated stochastic errors (such as the seasonal variations in the geopotential, drag, and
observation biases), which were included in the simulation, but could not be included explicitly

in the covariance analysis.
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SIMULATION OF AN EXPERIMENT TO MEASURE THE

LENSE-THIRRING PRECESSION USING

A SECOND LAGEOS SATELLITE

John C. Ries, Richard J. Eanes, Michael M. Watkins and Byron D. Tapley

Center for Space Research, The University of Texas at Austin

Austin, Texas 78712 USA

SUMMARY

The results of a number of simulations and covariance analyses performed at the University of

Texas Center for Space Research, including six blind tests in which the analysts processed simulated

data with a wide variety of unknown error sources, indicate that using two Lageos-type satellites in

orbits with supplementary inclinations will allow the measurement of the Lense-Thirring precession

of the satellite orbit planes with an estimated precision of 8% (1 a). While tides, thermal forces and

seasonal variations of the gravity field are among the largest contributors to the uncertainty, no error

source exceeding 5% was identified. Because of a degree of conservatism adopted in many of the

error models, it is suggested that, with the development of better models for the main sources of

error, the accuracy of the measurement could be improved significantly.

I. INTRODUCTION

A method for measuring the relative nodal precession of a pair of Earth-orbiting satellites, caused

by the gravitational dragging of the orbit plane of each satellite by the Earth's rotation (the Lense-

Thirring precession [Lense and Thirring, 1918]) as predicted by General Relativity has been

proposed [Ciufolini, 1986]. In the proposed experiment, a new Lageos-type satellite (Lageos-3),

which is identical to Lageos-1, placed in an orbit whose inclination is symmetric about the polar axis

with respect to Lageos-1 and tracked with satellite laser ranging (SLR) can be used to eliminate the

influence of errors in our knowledge of the longitudinally independent (zonal) part of the Earth's

gravitational field on the additive nodal precessions of the two satellite orbit planes. Elimination of

A.1
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this source of error will allow direct observation of the Lense-Thirring precession of the bisector of

the satellite orbit planes. Uncertainties in our knowledge of the even degree zonal harmonics (and

their secular, tidal and seasonal variatiom) mask the predicted precession due to the Lense-Thirring

effect for a single satellite, but the use of two satellites, orbiting with supplementary inclinations and

identical eccentricities and altitudes, will cause those model errors to cancel.

The University of Texas Center for Space Research (CSR), under NASA grant NAGW-1330, has

conducted a comprehensive numerical simulation and covariance analysis of the proposed mission to

1) determine the experiment feasibility, 2) determine the magnitude of the error that can be expected

in such a measurement, and 3) identify the error sources which limit the measurement accuracy. The

numerical simulation was designed to emulate as closely as possible the procedure to be used in the

proposed experiment. Thus, simulated laser range data were generated for a simplified tracking

network composed of only eight laser stations with ranging precision comparable to the better laser

stations currently operating. The current global SLR network contains 15 to 20 operational stations

and the adoption of eight stations for the study provides a conservative, if not pessimistic,

assumption for the tracking network distribution. The simulated data from the eight stations were

sampled in a manner which attempted to duplicate the distribution of the actual laser tracking of

Lageos, but with some conservatism in the amount of data obtained to reflect the possible conflict of

tracking Lageos and Lageos-3 with other satellites (such as Lageos-2, Starlette, Stella, etc.), although

current plans to provide multi-satellite tracking at each laser tracking site will minimize the potential

for this conflict.

A three-year orbit was adjusted in a preliminary solution to fit the simulated SLR data for each

satellite. The three-year time frame was selected to agree with the time interval for the proposed

experiment. The simulated data contained a comprehensive set of satellite force model and

measurement model errors. In the preliminary solutions, a small set of satellite dependent
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parameters were estimated to achieve reasonably good fits to the simulated data. The information

from both satellites was combined in a simultaneous solution for the individual satellite parameters

as well as the parameters common to both satellites, such as a few low degree zonals, selected ocean

tide coefficients, station coordinates and the Lense-Thirring scale parameter. A scaling factor for the

Lense-Thirring precession, whose value would be 1 in Einstein's general relativity, was introduced

into the simulation to represent the degree to which the Lenae-Thirring precession is present. A

parameterization of this sort is amenable to least-squares estimation techniques, allowing the

estimation of the parameter, as well as the uncertainty in the estimate based on the expected errors in

other parameters.

The feasibility of the proposed experiment depends on the type and magnitude of errors present

in the modeling of the forces on Lageos-type satellites, and the acceptability of the simulation

depends on the fidelity of the models chosen to represent those errors. Because of the nonlinear,

multi-dimensional nature of the orbit dynamics, error sources which do not directly affect the node

of Lageos-type satellites can still affect other orbit parameters, which in turn may affect the recovery

of model parameters which do affect the node. It is important that all significant error sources be

included, but the magnitude of the errors should be neither optimistic nor unreasonably pessimistic.

Thus, careful analysis of the errors which remain in the current Lageos orbit is required.

The purpose of this report is to document the results presented at the various meetings with the

Lageos-3 Science Advisory Group (SAG). There are, however, occasional differences between those

results and the material presented here. These differences generally represent improvements or

expansion of the analysis. Some of the changes are responses to the concerns raised by the SAG,

while other changes have been made to improve the clarity of the analysis.
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Nomenclature

In thefollowing discussion, the real Lageos spacecraft will be referred to generally as Lageos,

whereas the simulated satellites will be referred to as Lageos-1 and Lageos-3. In this analysis, the

formulas for the relativistic effects will include only the parameterized post-Newtonian parameters,

[3 and V. The parameter _d to scale the general relativity=_prediction of the Lense-Thirring

precession will be denoted by L, which is not a standard relativity parameter, but has been added for

the purpose described above. Errors in L will be referred to as a percent of the general relativistic

prediction of 1; thus, for example, a 6% error will indicate an error in the measurement of the

Lense-Thirring parameter L of 0.06.

Random errors of a given magnitude will represent a randomly chosen error from a Gaussian

distribution with zero mean and a standard deviation equal to the specified value. Random noise

refers to a similar process, but indicates that multiple realizations will be used (such as for individual

5-day values of polar motion or point-by-point data noise) rather than a single initial random error in

a parameter (such as a station coordinate or geopotential coefficient). Stochastic process errors will

refer to errors which vary with time in a stochastic manner. The primary model used to simulate the

effect of these errors is a first-order autoregressive (Markov) process defined by Box and Jenkins

[1970].

II. PRELIMINARY ANALYSES

First-order _yses of the measurement of the Lense-Thin-ing p_ssion using two Lageos

satellites in supplementary orbits have indicated that the measurement should have an uncertainty on

the order of 10% [Ciufolini, 1986, 1987, 1988, 1989]. In those studies, a number of error sources

were considered, but a rather simplistic approach was used in which the effect of each error on the

orbit node-rate was compared with the size of the Lense-Thirring precession. This type of analysis is

useful more in a qualitative sense; it is helpful in identifying error sources which are likely to be

A.4

Ig

I

Lm

g

!

13

i
im

m

w

Ill

I

II

m

z
m

u

i

I

g

r

II _



v

r

m

B

significant, but since it neglects a number of important nonlinear dynamical couplings, it is less able

to quantify the uncertainty precisely in the actual Lense-Thirring measurement. The analysis

adopted a conservative approach by estimating the maximum effect of the various errors considered,

resulting in a reported maximum statistical error of 12% [Ciufolini, 1989].

The cancellation of the Newtonian gravity induced nodal precession was demonstrated in an

initial simulation performed at the Center for Space Research using a more rigorous parameter

estimation approach [CSR, 1988]. This approach includes all of the interactions between the various

error sources, the estimated parameters and the tracking scenario. The sources of error were limited

to measurement noise and constant errors in the parameters for the Earth gravity model, the solid

Earth and ocean tide model, the solar and Earth radiation pressure models, and the tracking station

coordinates. The realizations of the gravity model errors were based on a mapping of the error in the

coefficients of the GEM-T1 [Marsh et aL, 1988] gravity model covariance matrix into a set of errors

for each coefficient in the geopotential model. The Earth and ocean tide errors were chosen to be

10% of their nominal value with the distribution randomly selected. The Earth radiation pressure

error was 100% of the total modeled effect; the solar radiation pressure reflectivity error was 20%.

Random errors in each station coordinate with a standard deviation of 5 cm were assumed. There

was no injection error assumed for the Lageos-3 satellite; i.e., Lageos-3 was in a perfectly

supplementary orbit and had the same semimajor axis and eccentricity as Lageos-1. The preliminary

simulation had as its objective the demonstration of the cancellation of the effect of errors in the

even degree zonal harmonics.

When the Lense-Thirring parameter, L, was estimated in the presence of these errors, the

recovered value agreed with the general relativity value to within 3%. Since this represented only a

single realization of the possible errors, a consider-covariance analysis was also performed.

Estimating the same parameters as in the simulation, but considering errors in the remaining
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parameters (data noise, remainder of the gravity field, other ocean tides, and station coordinates)

resulted in an uncertainty in L of less than 4%. Thus the simulation and the covadance analysis

produced similar results. The estimated uncertainty was less than half the 10% predicted in the error

analysis given in Ciufolini [1986]. Although most of the important error sources had been included

in' these simulations, the error model was incomplete. In particular, the model did not contain

random or stochastic errors, which are from a class of errors that could not be removed by the

estimation of most or all of the available parameters. That is, the structure of the satellite force

model was assumed to be known, and only the values of the force model parameters were unknown.

Increasing this preliminary error estimate by a factor of two to account for the lack of knowledge of

some components of the force model would have been reasonable.

Consequently, the success of the preliminary simulation was a necessary, but not sufficient,

condition for asserting the feasibility of the experiment, since several possible errors were not

considered. The simulation did demonstrate the cancellation that is necessary for a successful

mission.

Principal Error Sources

The primary model errors have been identified as the get)potential, the solid Earth and ocean

tides, and the surface forces on the Lageos-type satellites. While models for all of these effects exist,

the models are not complete, nor are the values for the parameters in the models known precisely. In

the initial phase of the study, there was concern expressed regarding the models for the surface

forces, particularly those representing the thermal effects that apply to Lageos-type satellites. Much

of the effort in the preliminary stages of this analysis was devoted to identifying and understanding

the possible mechanisms which can induce nongravitati0nai forces on Lageos-1 in order to be sure

that these forces are not critical to the Lense-Thirring measurement.
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Based on the formulation of Kaula [1966] describing the effect of the geopotential on a satellite

orbit, it can be shown that the errors in the zonal gravity coefficients will cancel if the inclinations of

the two satellites are supplementary, and if the semimajor axis and eccentricity are identical. Since

these conditions are unlikely to be met exactly, the error in knowledge of the coefficients of the

Ean.h's gravity field is an important consideration, and the magnitude of the errors in the zonal

coefficients will determine the allowable margin of error in the orbit injection of Lageos-3. An

analysis by Casotto [1989] is included in Appendix A-2 which quantifies the increase in the

uncertainty of the Lense-Thirring measurement due to error in the injection conditions (i.e., the

degree to which the semimajor axis, inclination and eccentricity of the Lageos-3 orbit differ from the

ideal values).

The most important effect of the solid Earth and ocean tides on the Lense-Thirring experiment is

that they induce periodic variations in the Earth's gravity coefficients, particularly the even zonals.

The sensitivity to errors in the tide models will be reduced by performing the experiment over a

sufficiently long period of time, nominally three years, so that their effects will average out. Tides or

quasi-periodic atmospheric pressure variations whose periods (in a space fixed system) are close to

the nodal periods of either Lageos or Lageos-3 could cause changes in the satellite orbits that look

like secular effects over the three-year experiment duration, but the results of this study indicate that

there is insufficient power in the tidal spectrum near these critical resonance bands to seriously affect

the measurement.

The surface forces on Lageos-type satellites consist of radiation pressure and atmospheric drag.

While the atmosphere is very tenuous at the Lageos altitude, there are still enough charged and

uncharged particles to cause noticeable drag on the satellite [Smith and Dunn, 1980; Rubincam,

1980, 1982; Afonao et al., 1985; Drozyner, 1988]. The dominant force, however, is the effect of

radiation pressure from the Sun. The reflectivity of the satellite surface can be estimated, but errors
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in the modeling of the effect of shadowing by the Earth and Moon have the possibility of causing

significant orbit errors. There is also the radiation pressure exerted on the satellite by light reflected

from the Earth and by heat which has been absorbed and reradiated by the Earth. Like the

geopotential, any zonal variation in the Earth's albedo or emissivity should cancel out, provided that

the two satellites have identical reflectivities. The sensitivity to differences in the surface properties

of the two satellites and the effects of longitudinal variations of the Earth's radiation are factors

which are considered in the investigation.

In addition to the incident radiation forces described above, recent investigations at the NASA

Goddard Space Flight Center (NASA/GSFC) indicate that heat, absorbed and reradiated

anisotropically by the satellite itself, can also produce a significant acceleration. The primary

along-track effect of the force produced by this anisotropic thermal radiation has been modeled

routinely for Lageos by an empirically determined function which was restricted to acting along-

track. Recent studies, however, indicate that much of the observed "drag n in the Lageos orbit may

be explained by the mechanism proposed by Rubincam [Rubincam, 1987, 1988]. These studies have

produced a more reasonable error model for the simulation and will eventually lead to models which

can be used in the actual orbit determination of Lageos and Lageos-3.
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Lageos Residual Analysis

An analysis of the Lageos range residuals from the latest CSR long arc 8801 [Tapley et al.,

1988a] was performed in order to evaluate the nature and magnitude of the errors which remain in

the current modeling of Lageos-type satellites. The SLR data from 1976 to 1988 were fit with a

single dynamically consistent orbit where an appropriate set of satellite parameters and geopotential

and ocean tide eoe-flleients were simultaneously estimated. The SLR tracking stations which

provided data for this solution are shown in Figure 1. The resulting t'ms (root mean square) fit was

20 era, although the fit to the data after 1980 was considerably better than the fit to the earlier data.
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The number of stations tracking and the rms of the range residuals in each 15-day interval are shown

in Figure 2. The improvement in the rms fit is consistent with the overall improvement in the

ranging accuracy of the SLR systems. The residuals from the laser ranges were projected into

equivalent mean orbit element errors for 6-day intervals in order to determine the nature and possible

sources of the remaining errors (see Section IV for graphical representations of the orbit element

residuals and their spectral content). There were a number of conclusions:

1. There has been a steady improvement in the quality and quantity of SLR data. The 6-day fits

are now able to attain 3 to 5 cm residual rms, and the normal point precision is approaching

the millimeter level. The factors which limit the precision of the fits over 6-day' arcs are

predominantly short period gravity errors, station coordinate and Earth orientation errors and

measurement biases (range biases, timing biases and tropospheric correction biases).

2. Most of the errors remaining in the Lageos long-arc residuals come from errors in diurnal and

semidiurnal tides, annual variations in the even zonal coefficients of the geopotential, annual

and semiannual variations in the odd zonals [Cheng et al., 1989], and thermal imbalance

forces. Any variations in the even zonals which do not cancel out will affect the ability to

measure the Lense-Thirring precession. This is one of the important reasons for using

satellites with supplementary inclinations. Even if the average value of the even zonals could

be determined with sufficient accuracy from multi-satellite solutions, there would still be the

problem of determining the temporal variations in the even zonals during the period of the

mission. Without the cancellation from supplementary inclinations, the variations in the even

zonals would cause variations in the nodal precession that could be confused with the Lense-

Thirring precession.

3. The current implied accuracy in determining the inclination of the Lageos orbit over a 6-day

period is typically better than 0.5 mas (rms). There are, however, systematic variations in the
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inclinationresiduals that can exceed 3 mas. These are mainly due to mismodeled diurnal and

semidiurnal tides, which will be estimated as part of the experiment. Errors in these tides will

still remain after their estimation, and at least a three-year averaging period is required to

further reduce their effect on the measurement of the Lense-Thirring precession.

HI. SIMULATION MODEL AND ADOPTED ERRORS

The procedure for generating the simulated data for the definitive blind test experiments involved

adding the capability for generating random errors to the data simulation program and setting up a

procedure for allowing the data to be generated in a controlled or blind mode. The following

sections describe the detailsof the simulation procedure.

Measurement Model and Tracking Scenario

The measurement model for the simulation consisted of laser range data taken from eight SLR

tracking stations with corrections for atmospheric delay, station motion due to plate tectonics and

tides, the satellite center-of-mass offset, and the relativistic light time correction. Table 1

summarizes the tracking scenario. Normal point laser range data were created at 3-minute intervals

during a three-year period when either satellite was visible at any of the stations during their

scheduled tracking shift. Since Lageos and Lageos-3 would be in competition with other satellites

for tracking, a network of only eight stations was adopted to provide a conservative amount of

tracking data for the simulation. These stations, illustrated in Figure 3, were specified as a subset of

the current laser tracking network in Figure 1, with most of the stations located in the northern

hemisphere. Thus, if the lack of a uniformly distributed tracking station network were to cause a

problem, this choice of stations should reveal it.

There was an attempt made to simulate the effect of data outages due to weather or station

downtime. The decimation of the data by randomly eliminating 75% of the passes for each satellite,
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combined with the limited tracking schedules adopted, created gaps in the tracking that should

represent the data outages due to these effects. For example, Figure 4 contains a histogram of a

portion of the simulated data for HOLLAS, the SLR station at Mt. Haleakala, Hawaii, which was on

a 5-days-per-week tracking schedule in the simulation. It is apparent that the data success is very

conservative, with many 6-day intervals containing only one, two or even no passes from this

station.

No special assumptions were made concerning extended or optimized tracking schedules. Each

station was assumed to track for a single eight-hour shift that was fixed for the entire three-year

mission, and four of the eight stations tracked only five days per week, as is common for many of the

NASA stations. Thus the amount of tracking for each satellite varied as the node preccssed with

respect to the ground stations, as can be seen in the data distribution histograms shown in Figure 5.

The data yield for Lageos and the simulated data for Lageos-1 show the same periodic character,

while Lageos-3 shows a higher frequency variation due to its faster ground track precession rate. It

is also apparent in Figure 5 that there was considerably less data generated in the simulation than the

total actually obtained for Lageos from all stations during the three-year period of 1984-86. That is,

the Lageos yield is approximately three times the yield for Lageos-I and Lageos-3.

T

v

w

Dynamical Model

The force models were based on the models currently in use at CSR in the analysis of the Lageos

satellite laser range data. The force models included the nonspherical geopotenfiai perturbations

with the coefficients defined by the NASA/GSFC gravity model GEM-T1 [Marsh et al., 1988] up to

degree and order 20, the Newtonian n-body perturbations due to the Sun, Moon, and planets with

positions and masses given by the JPL planetary ephemeris DE-200 [Newhall et al., 1983], solid

Earth and ocean tides, solar radiation pressure (with Earth and Moon shadowing), Earth radiation

pressure, an empirical along-track acceleration (or "drag"), and the relativistic perturbations. A
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model for the thermal drag forces induced by asymmetric heating of the satellite by the Earth has

also been ina'oduced [Rubincam, 1987].

RelativityModeling

There are a number of relativistic effects which must be included in the satellite orbit

determination model if the Lense-Thirring experiment is to be valid. A recent test in which the

complete formulation in the solar-system barycentfic frame was compared to the simpler geocentric

formulation verified that equivalent results can he obtained in either formulation [Ries et al., 1988].

:: :_: _:L: _ 7Z2Z 2:2 :: 2 :

The geocentric formulation is generally used for near-Earth satellite orbit determination, and it is the

model which will be used for the Lense-Thirring experiment.

The relativistic correction to the acceleration of an artificial Earth satellite is [Huang et al.,

1989]:
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+2(Dx/')

where

"-..GMsR_]_=( +V)(k_s)x c2R_ s ,

and J istheEarth'sangularmomentum per unitnm_ss(j= 9.8x 10sm 2/Sex),The vectorr isthe

geocentricsatelliteposition,and Rf.aisthepositionoftheEarthwithrespecttotheSun. GME and

GMs are the gravitational coefficients for the Earth and Sun, respectively. The parameter L is the

Lense-Thi'_ng parameter ad_ forthe purpose of theloast-squares estimation andconsider-

covariance analysis. The form of the acceleration is from Weinberg [1972], although Will [1981] has

A.12

mm

m
m

l

m

I

W

R

mm
m
i
l

m

m

W

z

I



r

v

m

m

m

w

a different, but equivalent, form. It can be seen that the estimate of L is dependent on the knowledge

of the relativity parameter y. However, the general relativity value of 1 for y is currently considered

to have been verified to better than 1% [Shapiro et al., 1976], and thus it introduces no significant

uncertainty in the estimate of L. The estimate of L is also dependent on the knowledge of the

gtodesic (or De Sitter) precession [De Sitter, 1916], represented by _, which amounts to about 17.6

mas/yr in the Lageos orbit node [Ciufolini, 1986]. This is not considered to be a limiting factor,

since the general relativity prediction of geodesic precession has been verified to at least the 2%

level [Shapiro et al., 1988], which is about 1% of the Lense-Thirring precession. Some analysis still

remains in the area of the relativistic effect of the oblateness of the Earth [Sorrel et aL, 1988].

Preliminary results indicate that this effect may be as much as 1-2% of the Leuse-Thirring

precession, but it is expected that this can be modeled to sufficient accuracy to eliminate it as a

significant source of error.

Measurement Model Errors

A number of different measurement errors were included in the simulated laser range data, and

these are summarized in Table 2. The observational errors were composed of 1 cm random noise

and several kinds of stochastically varying biases. While these errors are small for the higher quality

ranging stations and are not considered to have any direct effect on the Leme-Thirring measurement,

there is an indirect effect caused by data that contains errors other than simply random noise. Like

many of the minor error sources, these systematic observation errors subtly affect the Lense-Thirring

measurement by introducing spurious signals in the residuals that impede the recovery of all

parameters, thereby affecting the Lense-Thirring measurement indirectly. The remaining

measurement errors were of a kinematic nature, reflecting errors in the knowledge of the location of

the tracking stations with respect to the Earth and the orientation of the Earth with respect to inertial

space. Some of these parameters also affect the dynamical model, but their contributions are
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generally felt much more directly in the measurement model.

Observational Errors

The observational errors can be broadly divided into three typeS:

1. Biases (improperly calibrated system delays, erroneous survey of the calibration target, and

errors in the station software are examples of possible sources),

2. Time tag biases (local clock problems, incorrect application of time transfer, and station

software errors are examples), and

3. Troposphere correction=biases (biases in the meteorological data, biases in the tropospheric

refraction correction model, and variations in the pressure, temperature and water vapor as the

line-of-sight changes over a pass which cannot be accommodated in a model based on

atmospheric information at the ground station are some possible error sources).

It is possible to evaluate the size of the range biases in laser tracking through collocation tests in

which two or more laser stations are located close to each other as they attempt to range to a

common satellite. The Matera collocation report [NASA/GSFC, 1988], for example, indicates that

the biases were less than 2 cm even for the high noise Matera fixed site and about 0.5-1.0 cm for the

higher precision MTLRS units. For this analysis, a stochastic model for the biases was adopted with

an rms of 2 cm and a correlation time of approximately 10 to 20 days. To verify that the amplitude

and correlation time were realistic, the biases generated for the simulated data where averaged into

monthly bins and compared to monthly estimates of the biases in the real Lageos data from several

tracking stations. In Figure 6, the biases from the Royal Greenwich Observatory (RGO) and

MOBLAS-7 are compared to the simulated biases for these sites. It can be seen that the simulated

errors are at least as large as, and have variations similar to, the real biases. However, the real biases

are estimated from the post-fit residuals from the Lageos long-arc. They therefore contain not only

the actual range biases, but also the effect of other error sources, including residual orbit error and
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troposphere errors. The actual range biases are likely to be smaller than the plots indicate, and the

collocation comparisons appear to confirm this. Thus, the simulation approach used here leads to a

degree of conservatism, since the simulated range biases are larger than those expected in the real

tracking data, and the simulated errors are further augmented by separately modeled errors in the

troposphere correction.

The bias in the troposphere refraction correction was included using a time dependent first-order

process with a standard deviation of 0.2%. The standard deviation value is considered to he the

average precision of the Marini and Murray [1973] refraction correction model for laser range data

above 10 degrees elevation. The time biases were generated with a standard deviation of 2

microseconds, although the stations attempt to keep the precision of the time tags to the microsecond

level. The timing errors generated by this procedure exhibited the same level of agreement with the

time bias estimates from the Lageos residuals as was shown for the range biases. The correlation

time for the time tag errors was varied between 10 and 20 days, but the troposphere biases were

generated with a correlation time varying between 1 and 2 days, based on the assumption that the

troposphere errors were likely to vary from day to day.

Nutation, Precession, Earth Orientation

Assuming that nutation, precession and Earth orientation will be determined by very long

baseline interferometry (VLBI), uncertainties in the orientation of the Earth with respect to inertial

space were introduced in several ways in order to obtain as realistic a spectrum of errors as possible.

The 5-day values of xt,, Yt, and UT1 were corrupted with 1 mas random noise, while the nutation

corrections proposed by Herring [1986, 1988] were corrupted by 1.0 mas random noise in 5-day

intervals, plus 0.1 mas random errors in the amplitude of the long period components and 0.05 mas

random errors in the short period components. In addition, a 0.1 mas/yr random error was included

in the precession in right ascension, and the mean obliquity was also perturbed by 0.1 mas. The
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level of errors assumed are a conservative representation of the operational accuracies of the VLBI

Earth rotation solutions [Herring, 1986].

Station Coordinates and Plate Motion

In addition to the 5 cm random errors in each cartesian component, several other types of

uncertainties in the station locations were introduced. The plate velocities for each station were

perturbed by 1 cm/yr random errors in all three cartesian components, these errors being

conservatively based on Minster and Jordan [1978, 1987] and Watkins et al. [1988]. Even if stations

were on the same plate, they were still assigned different velocity errors, since this could represent

deformation within the plate or perhaps some local phenomenon. The velocity errors were not

constrained to the horizontal plane in order to include the effect of possible subsidence or uplifting in

the area of the _cking station. The pia_ Veloci_ errors also had the effect of simulating some

long-period polar motion error, since the net rotation of the velocity errors was non-zero. The

geometric tide corrections for each station were perturbed by 5%, both in the h2 and 12 components.

These errors are generally larger than the uncertainties given in Herring [1986], but they were used

to include errors such as mismodeled ocean loading and other periodic station perturbations.

Dynamical Model Errors

The preliminary analyses indicate that the dynamical model errors are rhe most crucial factor in

the measurement of the Lense-Thirring precession. In order to avoid the optimism of the initial

simulations, errors were included in this analysis in every aspect of the dynamical model. Only the

indirect planetary perturbations were 'not corrupted, since they are not ex_ to have any

significant error for Lageos, as long as all of the important planets are included in the modeling. The

dynamical model errors are Summarized in Table 3 and are descn'bed in more detail in the following

sections.
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Geopotential

The spherical part of the gravity field of the Earth, as well as the overall scale of the geocentric

frame, is determined by the Earth's gravitational coefficient, GM. The accuracy of the latest

determination of GM is estimated to be about 0.001 km3/s 2 [Ries et al., 1989], but errors several

times this value were included in some cases. This generally had no effect on the Lense-Thirring

parameter recovery, since GM was always estimated, but it did require that GM be tuned during the

preliminary orbit fits when the error was too large.

The nonspherical portion of the gravity field of the Earth is usually represented by a spherical

harmonic expansion, with the zonal harmonics representing the longitude independent portion

[Kaula, 1966]. The errors in the model for the constant part of the gravity field were generated based

on the covariance of the NASAJGSFC geopotential solution, GEM-T1 [Marsh et al., 1988]. A list of

the GEM-T1 variances and covariances for the even zonals is given in Table 2 of Appendix A-2.

Several different realizations were generated so that the six blind tests did not all have the same

gravity model error. Because of the insensitivity of Lageos to the high degree and order coefficients,

only the coefficients up to degree and order 20 were included.

Postgiacial rebound, which is primarily attributed to the viscous relaxation in the mantle, has

been observed through the changes of the Earth's zonal harmonics using the geodetic satellites,

Starleue and Lageos. The secular variations in the first two zonal harmonics, J2 and J3 were given

errors in the range of +5 to -35 (× 10-12 yr-l). These errors are larger than the error estimates in

Rubincam [1984], Yoder et al. [1983] and Cheng et al. [1989], but they were chosen conservatively

in order to account for errors in the secular rates of the zonal harmonics above degree 3 as well as

any long-period variations which would appear secular over the time span of a three-year mission.

In addition to the secular variations and the periodic variations caused by tides (described

below), there are also seasonal changes which are the result of a number of mechanisms, primarily
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theredistributionof air andwater mass [Gutierrez and Wilson, 1987; Chao, 1988]. The lumped

effect of the variations in the even and odd zonal harmonics have been determined using Lageos and

Starlette, and the year-by-year variations are a significant fraction of the average annual and

semiannual effects [Tapley et al., 1988a; Cheng et al., 1989]. Figures 7a and 7b plot the observed

variations in the Lageos and Stadette orbit nodes, respectively. The annual variation is clear in both

plots, but it can be seen that there is a significant difference in the annual variation from year to year.

In order to simulate the observed errors, a second-order autoregressive process was used which

was capable of generating quasi-periodic variations when properly initialized [Box and Jenkins,

1970]. Some examples of the realizations for the seasonal variation in J;_ are plotted in Figure 8.

Seasonal variations were generated for 10 low-degree geopotential coefficients (C20, C21, S21, C22,

$22, C3o, C31, $31, C32, $32). The Lageos node residuals shown in Figure 7a were used to initialize

the time series for the annual variations in the even degree terms, while the eccentricity residuals

(not shown), which contain annual and semiannual variations, were used to generate the

perturbations to the odd degree terms. The inclusion of these seasonal variations provided model

errors that could not be accommodated perfectly by any of the adjusted parameters.

Tides

The gravitatio_l effect of the Sun and Moon deform the Earth and its oceans, causing periodic

variations in the gravitational attraction of the Earth on satellites in orbit. The conventional form for

expressing this effect is in terms of spherical harmonic coefficients, identical to the constant part of

the Earth's gravity field except that the coefficients of the fide model have temporal variations which

are functions of the motion of the Sun and Moon [Fanes et all, 1983].

The major part of the solid Earth tide effect is modeled with a frequency independent Love

number k2 = 0.30 (ratio of the response of the second degree component of the Earth's gravitational

potential to the applied potential due to the Sun and Moon) and a phase lag of 0.0 degrees. This
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Love number is used for all frequencies of the Earth's response, which varies from very long period

(18.6 years) to semidiurnai. The tidal potential is evaluated in the time domain from ephemerides of

the Moon and Sun, such as the 3PL DE-200 planetary ephemeris [Newhall et al., 1983]. The

remainder of the solid Earth's response is modeled as frequency dependent corrections to the

frequency independent part by using the model developed by Wahr [1981] for the long period,

diurnal and semidiurnal tides. Ocean tides are modeled in UTOPIA through a set of constant

spherical harmonic coefficients that originate from 11 lines computed by Schwiderska" [1980] in

terms of a discrete set of frequencies with amplitude and angular argument given by Cartwright and

Tayler [1971]. The angular arguments are computed from linear combinations of the mean elements

of the Sun and Moon. Interaction effects are included explicitly by adding additional tidal lines at

frequencies including the mean orbital rates of both solar and lunar elements. The nominal values of

the tide coefficients used in this analysis were derived from the NASA/GSFC GEM-T1 tide model

[Christodoulidis et al., 1988; Marsh et al., 1988].

The value of k2 is fairly well determined, and only a 3% error was applied. Since k2 was always

estimated and was recovered accurately, this was not a significant source of error. In the initial

simulations, errors in the frequency dependent tides were assumed to be 10% of their nominal value.

However, examination of the the error estimates in Christodoulidis et al. [1988] indicated that this

assumption was optimistic, and a more conservative error model was adopted for the final

simulation. A 20% error, with a 2 nun maximum, was assumed for the semidiumai tide components.

The diurnal and long period tide components appeared to be less accurately determined, and 30%

and 40% errors, along with 6 mm and 15 nun maximums, were assumed for the diurnal and long

period tide components, respectively. The maximum error ceiling was applied in case a 3-o

realization happened to occur for one of the larger tides, but this turned out to be a rare occurrence.

A.19



Solar Radiation Pressure

The acceleration of the Lageos satellite due to the photon pressure from the Sun is a fairly

complex function in spite of the simplicity of the shape of Lageos. The solar "constant," for

example, is estimated to vary by about 0.1% [Willson and Hudson, 1988], but the lack of

ixttercalibration of the pyroheliometers causes a disparity in the various measurements of the solar

irradiance of up to 0.3% [Willson, 1978; Mecherikunnel et al., 1988]. In addition, the a priori

knowledge of the overall reflectivity of the satellite is limited, but, fortunately, the solar radiation

pressure has a very distinct signature which separates well from other forces, allowing the accurate

estimation of the reflectivity parameter (actually a scale parameter for the entire solar radiation

pressure force). However, there is some uncertainty concerning the exact shape of the Earth's

shadow, since the atmosphere attenuates some of the light near the edge of the shadow (either due to

clouds or simply refraction) [Hale),, 1973]. There is also concern that the numerical integration

procedure may generate significant orbit error because of the use of step sizes which greatly exceed

the time spent in the penumbra portion of the shadow. When this occurs, the integrator is integrating

a different function than the correct one. This error is expected to average out to some degree, and

the estimation of arc parameters (initial conditions, empirical drag, etc.) also absorbs some of the

elTOl'.

In order to include the effect of these uncertainties, random errors were applied to the

reflectivities of both satellites and the radius of the Earth used to calculate the shadow boundary, and

a different stepsize and order were implemented in the integrator so that the shadow crossings did

not occur at exactly the same times for the data simulation and the data analysis.
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Earth Radiation Pressure

The Earth constitutes the next largest source of radiant energy for artificial satellites. The model

in UTOPIA for the radiation pressure in the optical (shortwave) and infrared 0ongwave) regions is
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based on themodel by McCarthy and Martin [1977],inwhich the portionof theEarth'ssurface

visible to the satellite is divided into discrete segments, and the radiation from each segment is

calculatedand vectoriallysummed toobtainthetotalforceon thesatellite[Knockeand Ries,1987;

Knocke, 1989]. The model for the Earth'salbedoand emissivityis composed of a zonal-only

sphericalharmonic representation,with the coefficientsbased on the analysisof Stephens etal.

[1981].The adoptionof sucha model isbasedon two arguments,thefirstbeingthatvariationsin

the Earthradiationparametersshow a dominant latitudinaldependency with a somewhat weaker

longitudinaldependency [Lochry,1966].Also,in the absenceof resonance,itislikelythatthe

Earth'srotationwilltend to averageout any long periodorbitaleffectsfrom the longitudinal

variationsin albedoand emissivity.A similarargument appliestoconcernsabout localareasthat

aresignificantlydifferentfrom theaverage.Spotsthatareparticularlycold,forexample,likethe

topsof some high clouds,would occupy only a smallfractionof the areaviewed by Lageos atits

high altitude.Furthermore,such spotswould not be long-lived,and are not likelyto be resonant

withLageos,so theireffectsaresubsumed asacontributiontotheoverallaverageeffect.

The effectof the Earth'sradiationpressureon theLageos orbitnode predictedby UTOPIA is

compared toRubincam and Weiss [1985]and Sehnal[1981]inTable4a [fromKnock, 1989].Tbe

UTOPIA node ratepredictionwas obtainednumericallyby comparing a one-yeartrajectorywhich

includedthe component of theEarthradiationpressurebeing investigatedwith a trajectorywhose

forcemodel excluded the particularcomponent Itwas found thatthe node rateinduced by the

shortwave(optical)component oftheEarthradiationpressurevariedfrom yeartoyear.The causeis

likelyto be due to a dependence on the orbitaleccentricityand the locationof the argument of

perigee.As can be seeninTable4a,tbeaverageof theopticalcomponent from two differentyears

appearsto be in good agreementwith Rubincam and Weiss [1985],whose analysisignoredthe

eccentricity.There isconsiderabledisagreementwith Sehnal [1981].Itappearsthattheformula
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derived by Sehnal has been incorrectly evaluated for Lageos, with the result that it is too large by

more than an order of magnitude. The value used by Sehnal for the area-to-mass ratio of Lageos is

not specified, and an effort has been made to contact the author concerning the possible error, but, at

this time, nothing has been received.

Some experiments were performed in Knocke [1989] in which the zonal model was expanded to

include longitudinal variations, but there was little effect on the Lageos orbit, since only the zonal

components appeared to contribute significantly to the long period orbital evolution. Additional

complexity in the albedo model was added when diurnal variations and the effects of anisotropic

reflection were included. The diurnal variations are the changes in the Earth's reflectivity which are

dependent on the Sun's zenith angle; for example, there might generally be more clouds in the

morning and evening than at noon. The anisotropic effects are due to the fact that many of th¢

Earth's surfaces are not necessarily perfectly diffusely reflecting surfaces. Rubincam et al. [1987],

for example, made use of satellite radiometer measurements of the ocean to study the effect of a

hypothefi_c_l seycre hemispherical asymmetry in the Earth's directional reflectance in an attempt to

explain some of the "drag" observed on Lageos. Knocke [1989] used Nimbus-7 radiance data to

develop an anisotropic reflection function for 10 latitude bands, and these functions were combined

with the diurnal variation model to create an advanced Earth radiation pressure model.

When the effects of the advanced and diffuse models on the Lageos orbit were compared, it was

found that the advanced model, with its longitudinal, anisotropic and daily variations, predicted long

period orbit perturbations that were very similar to those predicted by the nominal, purely diffuse

model. However, the effect of Earth radiation pressure on the node as predicted by the advanced

model was less than the diffuse model, implying that the results of the simulation may actually

represent an upper bound on the effect of Earth radiation pressure model errors.
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Taking the diffuse model as a conservative error model, the analysis of the effect of Earth

radiation pressure on the nodes of Lageos-1 and Lageos-3 is shown in Table 4b. It can be seen that

the effect is about 10% of the the Lense-Thirdng precession on each satellite individually, but due to

the supplementary inclinations, the result on the Lense-Thirdng measurement would be only a 1%

error, assuming identical satellite masses, areas and reflectivities.

The Lageos-3 satellite will be constructed to be nearly identical to the Lageos satellite in size and

mass, but there will likely be some difference in the surface properties due to a lack of

documentation on the surface treatments for the Lageos satellite. The overall reflectivity of Lageos,

the parameter referred to simply as the solar reflectivity, is estimated from the solar radiation

pressure model to be about 0.13. This quantity represents a "lumped" effect over the whole satellite

and is not the actual surface reflectivity.l That is, of the total incident radiation from the Sun, much

of it is reflected in equal and opposite amounts, leaving only a net 13% additional momentum

transfer. The total force on the satellite is then 1.13 times the incident radiation pressure, the 1.00

coming from the incident momentum and the 0.13 coming from the reaction to the reflected part.

The Starlette satellite is an independently built satellite, but the current CSR estimate of its

reflectivity is about 0.12. Thus, letting the simulated surface properties of Lageos-3 be as different

from Lageos as is Starlette amounts to (1.13-1.12)/1.12, or about a 1% imbalance. This would

cause an additional 0.1% error in the Lense-Thirring measurement Clearly, the difference in the

surface properties of Lageos-1 and Lageos-3 can be much larger without seriously affecting the

cancellation, and this argument applies to both the optical and infrared reflectivities of the two

1 It is instructive to note that a perfectly specularly reflecting sphere, whose surface reflectivity is 1, has an
overall reflectivity of 0, since the reflected energy is reradiated isolropically with no net momentum transfer
beyond the incident amount [Lochry, 1966]. In the extreme opposite case, a perfectly reflecting flat plate
normal to the Sun would reflect 100_ of the incident radiation back at the Sun, resulting in an overall
reflectivity coefficient of 1. Thus, a satellite's reflectivity coefficient will always be in the range of 0 to 1.
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satellites. There is very little information concerning the reflectivity of Lageos in the infrared, but it

can be seen that it is unlikely that the surfaces will be so different as to seriously degrade the

cancellation.

One caveat should be noted. The simulation assumed that Lageos-3 had the same argument of

perigee as Lageos- 1 at the start of the mission. It has been noted that the actual node rate due to the

optical component at any given time will be dependent on the location of the perigee, and the level

of cancellation shown in Table 4b may differ for other choices of the initial perigee for Lageos-3.

However, the Lageos and Lageos-3 perigees move through more than a full revolution during the

three-year period of the mission, and the three-year averages for orbits with non-matched initial

perigee should cancel as well as the one year averages in Table 4b.

The analysis above indicates that completely ignoring the modeling of the Earth radiation

pressure would have very little effect on the measurement of the Lense-Thirring precession. For

completeness, however, random errors of 0.03 were applied to all of the coefficients of the Earth

albedo and emissivity model. In the case of the J0 coefficient of the albedo or emissivity, for

example, an error of 0.03 is equivalent to 3% of total Earth radiation pressure force acting on the

satellite. In addition, random errors of 0.01 (the same level of difference between Lageos and

Starlette) were applied to the individual reflectivities for the optical and infrared components of each

satellite.

Thermal Forces and Atmospheric Drag

Thermal forces on the Lageos satellite have been identified to be a significant source of error for

the Lense-Thirring measurement. Since this force has only recendy been considered and the

investigations are Still continuing, a m0_ comprehensive dlScus-sionofthe:fo_ and its error model

is appropriate,
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After subtracting most of the known forces acting on the Lageos satellite, there still remains a

significant along-track acceleration which is reducing the semimajor axis by approximately 1 mm

per day. The mean of the observed acceleration over the entire arc is about -3.5 picometer/s 2

(pro/s2), with fluctuations that are sometimes as large as the mean. The largest variations (or spikes)

always occur when the Lageos satellite is experiencing eclipsing of the Sun by the Earth, although

every eclipsing interval does not necessarily generate a spike. Thus, both the mean and the

variations require an explanation.

A thermal drag model, a variant on the Yarkovsky effect [Burns et al., 1978], has been proposed

by Rubincam [1987] which is able to account for much of the observed average along-track

acceleration. The heat from the Earth is absorbed by the laser retroreflectors, and because Lageos is

spinning, the heat distribution is uniform longitudinally, but not latitudinally. This creates a

temperature imbalance between the northern and southern hemispheres of the satellite, generating a

thrust along the spin axis as the heat is re-emitted (Figure 9). If the heat was re-emitted immediately,

the thrust would have no net effect averaged over one orbital revolution of the Lageos satellite. Due

to the combination of the geometry of the reflector mounting and the materials used, there is enough

thermal inertia that some of the heat is not emitted immediately, but rather, is delayed until the

satellite has moved a significant distance along its orbit. This delay causes the thermal thrust to have

a non-zero average in the along-track direction if the spin axis of the satellite is oriented in or close

to the orbital plane (see Rubincam [1987] for a fuller explanation). The improved model in

Rubincam [1988] accounts for the heat wanspon more precisely, as evidenced by the extremely good

agreement with the engineering data.

m
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The model for the "Earth Yarkovsky" effect, 2 the thermal lag-induced acceleration due to Earth

heating, is represented in this investigation as

i:=-2 a sin 8 eoslu-_ls

where u is the argument Of latitude of the satellite, and the vector s is the spin axis direction, which is

assumed for Lageos to be in the same direction as the spin axis at the moment of the final orbit

injection [Rubincam, 1987]. The nominal value of the magnitude of the thermal acceleration,

2o_sinS, is approximately 6.3 pm/s 2 and the current estimate for the thermal delay angle, 8, is 55*

[Rubincam, 1988]. The model accounts for about 70% of the observed drag, and the remainder can

be accounted for by of a combination of neutral atmosphere and charged particle drag [Rubincam,

1980; Rubincam, 1982; Afonso et al., 1985]. The thermal drag model also predicts periodic

variations about the mean with periods of once and twice per node revolution of the Lageos orbit,

which is 1050 days.

In order to validate the Earda Yarkovsky model, the effect of thermal drag due to Earth heating

was included in a simula_ orbit spanning the first i2 years of the real Lageos orbit. The trajectory

generated by a force model which included the thermal drag was then used as data in an orbit

determination experiment where the thermal drag was excluded, but 15-day empirical along-track

accelerations (or drag) where estimated instead. By this procedure, the effect of the thermal drag

model on the recovered values of the drag coefficients could be studied, and the effect on other orbit

elements could also be examined. The result of using the nominal model described above is

2 The classical Yark0vsky effect, discovered by an Eastern European scientist around 1900, is an
acceleration due to a "diurnal" as_,mmetr7 in the heating of a body, such as a dust particle in the
in ter_lane _t,_ta__,_,.medium.If the body Lsspinning much faster than its thermal response however, the effect of
the seasonal asymmetry, due to the hemisphere of the body which .is tilted tow_ the Earth or San
experiencing greater heating, will be much larger than the effect of the "di_d" _balance. Thus, labeling
the thermal thrusting effect on Lageos as the Yarkovsky effect is appropriate, since the current thermal
forces will develop into the classical Yarkovsky force as Lageos despins.

I

W

U

U

!
I

U

II

g

m

I

gl

J

i

!

I

m
m

m

i
I

A.26

m
m

m

z

m
I



m

compared to the observed "drag" in Figure 10, where an additional acceleration of 1 pm/s 2 has been

included to account for atmospheric drag. The peculiar variation in the recovered drag is the

superposition of a 1050 and 525 day period with amplitudes and phases matching those predicted by

Rubincam [1987]. From Figure 10, it can be concluded that it is unlikely that thermal drag could

account for 100% of the average drag since the amplitude of the 1050 day periodic variation would

also increase proportionally, and the agreement with the observed variations would be degraded.

The validity of the Earth Yarkovsky model is supported by examining the effect of thermal drag

on the orbital inclination of Lageos. As first reported [CSR, 1989], the Earth Yarkovsky effect also

leads to a slope in the inclination residual. The slope in the inclination is predicted to be

approximately 0.9 re_as/year [Farinella eta/., 1989]. Figure 11 shows the actual Lageos inclination

residuals from Lageos long-arc 8808 [Tapley et al., 1988a] after all other known forces have been

modeled and most of the periodic phenomena have been removed. The poorer quality of the early

laser data is evident in this figure. The observed inclination slope for Lageos is 1.4 mas/yr, with an

uncertainty of about 0.2 mas/yr due to the large variations still remaining. The slope in the Lageos

inclination residuals has been a concern for some time, since there seemed to be no reasonable force

which could generate an inclination change of this magnitude. It is most convincing that a single

model is able to explain much of the average drag, the observed drag variation at the 1050 day

period and most of the residual inclination slope. Errors in the modeling of other nongravitational

forces are likely to account for the remainder of the inclination slope.

Unfommately, Earth heating does not account for the large variations that occur during the

intervals where Lageos is experiencing shadowing (eclipsing of the Sun by the Earth). One possible

mechanism for the large variations during eclipse seasons is the cooling of the satellite during

shadowing. Since the spin axis orientation is essentially fixed with respect to the Sun over an orbit,

the hemisphere of the Lageos satellite which is experiencing summer (tilted towards the sun) will be
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wannerthantheoppositehemisphere at every point in the orbit. This temperature difference will be

essentially constant except for the additional influence of the Earth heating. Ignoring the Earth's

heat (which is accounted for in the Earth Yarkovsky model) and the effect of shadowing for the

moment, it can be seen that, because the force generated by the solar heating will be uniform over

the orbit, there is no net effect on a circular orbit (except an infinitesimal shift in the orbit center).

For a non-circular orbit, there are variations in the orbit inclination and node to first order in the

eceentrieity, but there are negligible for Lageos because of the small orbit eccentricity [Anselmo et

a/., 1983; Farinella et al., 1989]. Thus, between eclipse seasons, the Earth Yarkovsky effect plus

atmospheric drag should adequately account for the observed drag.

During shadowing, however, the "solar Yarkovsky" effect cannot average out, and there is a net

along-track acceleration. Only during those eclipse seasons where the hemispheres were

experiencing equal heating ("spring" or "fall"), would there be no solar Yarkovsky effect. Slabinsla"

[1988] indicates that this force will result in a positive acceleration most of the time. This is

suggested also by Figure 12, where the model for the Earth Yarkovsky effect and atmospheric drag

have been removed from the observed drag in the Lageos long-are (the difference of the two curves

in Figure 10). The largest variations tend to be positive, and they occur more often, but there are

negative accelerations produced as well.

The magnitude of the solar Yarkovsky acceleration (60 pm/s 2) was not based on expected

temperature differences, but rather was chosen simply to give peaks with the same approximate

amplitude as those seen in Figure 12. However, the modeling adopted was nearly identical to that

derived by FarineUa et al. [1989], where an estimate of the expected temperature difference was also

derived. The only significant difference in that study was the use of a decay time of approximately

50 minutes for the cooling (with a possible uncertainty of a factor of 2), whereas the model in this

investigation used a 30 minute decay time. Studies at CSR indicate that the effect of the model is
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not particularly sensitive to the choice of the decay time constant in the region of 20 to 50 minutes.

As can be seen in Figure 12, where the predicted effect of the Solar Yarkovsky model on the

estimated drag is compared to the observed drag after models for the Earth Yarkovsky and

atmospheric drag have been removed, the model does not accurately predict even the sign of some of

the spikes, while others are predicted reasonably well. There are also occasions when a spike is

predicted but not observed.

Thus the thermal force model for Lageos is not yet cornplet_) enough for actual orbit

determination, although considerable progress is being made by investigators at CSR and elsewhere

[Scharroo et al., 1989; Farinella et al., 1989]. The model is, however, much more realistic than any

model which considers the force as drag only. The effects of Earth and solar Yarkovsky on the

Lageos orbit are plotted for a six-year time span in Figures 13 and 14. It is apparent that the effects

on the orbit elements are in some cases quite significant and provide a strong test of the ability to

detect the Lense-Thirring effect in the proposed experiment.

A number of choices were possible for the orientation of the Lageos-3 spin axis, but the most

conservative approach was considered to be an orientation similar to, but not exactly the same as,

Lageos-1. In this orientation, the thermal drag force due to Earth heating on Lageos-3 was nearly at

its maximum, but there would be periodic variations introduced as well. Choosing an orientation

that was nearly polar would cause little increase in the magnitude of the force while eliminating the

periodic variations, and choosing an orientation more nearly parallel to the Earth's equator would

decrease the magnitude of the thermal force. This choice could also be justified by the probability

that Lageos-3 would be inserted into orbit in a manner similar to Lageos, and thus the Lageos-3 spin

axis orientation is likely to be similar to Lageos. The magnitudes of the Earth Yarkovsky

acceleration for Lageos-1 and Lageos-3 were varied between 4 and 9 pm/s 2 in the various blind

eases. Similarly, the magnitude of the solar Yarkovsky effect was varied between 15 and 75 pm/s 2.
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The density of the atmosphere at Lageos altitude is extremely small, yet it is estimated that the

combination of neutral particle and charged particle drag could cause an acceleration with a

magnitude on the order of one pm/s 2. Early studies attempted to explain the entire observed drag on

Lageos in terms of neutral and charged particle drag [Rubincam, 1980, Afonso et al., 1985]. The

required particle density and electric charge on the Lageos satellite generally appeared to be near the

upper limits of what was thought to be possible in order to explain the entire amount of observed

drag. Since about 70% of the observed drag is explained with the thermal thrust mechanism, the

density and charge required to explain the remaining drag are considered to be reasonable

[Rubincam, 1988].

A test was performed in which current atmospheric drag models were extrapolated to the Lageos

altitude, but since they do not consider the charged particle drag effects, it is not surprising that the

predicted drag acceleration was not large enough to account for the remaining drag. There was also

very little variability observed in the predicted drag. Thus, an empirical model for the drag was

adopted in which the drag acceleration was generated as a stochastic process with a l-day correlation

time, an rms of 1 pm/s 2 rms about a mean that was varied between -1 and -1.5 pm/s 2. A sample

realization of this process is illustrated in Figure 15.

The effect of combining the thermal thrusts and stochastic drag on the estimated values for the

15-day empirical drag coefficients can be seen in Figure 16. The dally samples of the drag are not

entirely smoothed by the 15-day averaging. By comparing Figure 16 to Figure 10, it can be seen that

the resulting variations in the drag estimates from the simulated data are quite similar to those

observed in Lageos. The mean is about -3.5 pm/s 2, and the long period variation is the 1050-day

periodicity caused by the Earth Yarkovsky effect. The rms of the sca_r about the mean is about

1 pm/s z for both the real and the simulated drag coefficient estimates.
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IV. SIMULATION PROCEDURE AND RESULTS

Simulation Procedure

The numerical simulation was designed to emulate as closely as possible the procedure to be

used in the proposed experiment. Thus, simulated laser range data were generated and sampled in a

manner which attempted to duplicate the distribution of the actual laser tracking of Lageos. A three

year orbit was adjusted in a preliminary solution to fit the simulated SLR data for each satellite for

each of the six cases. In the preliminary solutions, a small set of satellite dependent parameters was

estimated to achieve reasonably good fits to the simulated data.

After the preliminary orbits had been obtained, information equations were written which

contained the partial derivatives of all the parameters which were to be estimated or considered. The

information equations were combined in CSR's Large Linear System Solver CL_ISS) into a form

suitable for obtaining solutions and performing consider-covariance analysis with the Consider

Analysis Program (CONAN'). The compaction of three years of data from each satellite into a single

information matrix allowed the efficient execution of a large number of experimental solutions.

Data Generation

In the initial definition of the simulated experiment, there was concern expressed by the Science

Advisory Group that, if the analysts who would be processing the data possessed a priori knowledge

of the true value for L and the other perturbed parameters, they would tend to be biased in their

choice of the parameters to be estimated. This concern was addressed by adopting a blind simulation

procedure in which the CSR analysts would not know the true value for any of the approximately

1550 individual error sources, including the true value of L. The capability to achieve the blind

simulation of the SLR data was accomplished after considerable modifications to the University of

Texas Orbit Processor Program (UTOPIA) to allow most of the errors, in both the model parameters
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and in the time varying stochastic processes, to be generated automatically. The few remaining

parameters could then be easily perturbed by hand by the two SAG members, John Armstrong and

Bob King, who assumed responsibility for preparing the simulated data set. The automatic

capability for generating most of the random errors was important since it is would be difficult to

fully understand the computer operating system, its editing program and the intricacies of the inputs

to a complex orbit determination program within the few days available to the two SAG members. It

was critical that the simulated data be generated in a manner consistent with the software used in the

estimation process so that the resulting analysis did not fail for the wrong reason. It was also

necessary that the ability to specify the seeds for the various random errors be included, so that any

of the computer runs could be duplicated exactly in case anomalies were noted later. The extensive

modifications, and the thorough testing required, resUl_ in some delay in completing the simulation

and providing the final report, but the resulting system performed well and will provide a valuable

simulation tool for future studies.

Data Processing ........ -_-_

Before the combined Lageos-1/Lageos-3 solution could be performed, it was necessary to

converge preliminary orbits which attained reasonably good fits to the simulated data. The

preliminary estimates of the orbits were obtained using, in _ iterative fashion, a linearized least-

squares estimation procedure. The highly nonlinear orbit determination and parameter estimation

problem can be converted into a linear estimation problem by an expanding in a Taylor's series

about _me a priori estimate of the orbit which is defined by a priori values for the initial conditions

and the dynamical and measurement model parameters [Tapley, 1973]. The accuracy of this linear

estimate is dependent on the accuracy of the nominal values of the parameters. The closer the a

priori estimate is to the true value, the more accurate the new estimate will be. Otherwise, the

process must be iterated. It is particularly important that the satellite orbit be reasonably close to the
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true orbit, so that the partial derivatives required for the parameter estimation are accurate.

Thus, it was most efficient to converge the individual Lageos-1 and Lageos-3 orbits separately in

order to obtain good quality preliminary orbits. The parameters estimated in this orbit determination

procedure were the initial state for the three-year integration, the satellite solar reflectivity, and 15-

day values for the empirical along-track acceleration ("drag"). The magnitude of the Earth

Yarkovsky effect was not estimated, but was empirically adjusted based on the average magnitude of

the estimated drag. Since it is estimated that there is approximately 1 pm/s 2 of drag on Lageos, and

one would expect a similar level of drag on Lageos-3, the magnitude of the Earth Yarkovsky effect

for each satellite was modified during the preliminary orbit fits to obtain an average value of the

estimated drag of approximately -1 pm/s 2. Since the simulated drag was allowed to vary as much as

50% from this value, the adjusted Earth Yarkovsky acceleration could be in error by as much as

15%. While Rubincam [1988] does not provide an error estimate for his model, the level of

agreement with the engineering data and with the drag observed in the Lageos orbit indicates that the

error in his model is unlikely to be larger than this. The only other parameters which were estimated

_;ere the gravitational coefficient, GM, and the frequency-independent solid Earth tide parameter,

k2, when the magnitude of the residuals from the preliminary orbit solutions indicated that the

nominal values of these parameters contained an unacceptable level of error.

The resulting orbits generally fit the simulated range data to the 30 to 50 cm level. Experience

with Lageos indicates that this level of agreement with the observations is generally adequate for

reliable solutions for dynamical model parameters without the necessity of iterating. Improved

results might have been obtained if the solutions had been iterated further, but the process is time-

consuming, and there was insufficient time available in this investigation to pursue this possibility.

The rms of the resulting fits by station for Case 3 are summarized in Table 5. The quantity

referred to as the data error rms is the contribution of the station-dependent observation errors
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(range,troposphere and timing biases and white noise). The difference between the data error and

the fit rms reflects the contribution of the kinematical and dynamical model errors. It is not

surprising that the Lageos-3 fit is worse than Lageos-1, since the gravity model errors in the

simulation were based on the GEM-T1 gravity model solution covariance [Marsh et al., 1988]. That

solution contained data from Lageos and thus Would be expected to fit Lageos-1 data well. There

were no satellites similar to Lageos-3 in the solution, hence the less accurate fit to Lageos-3.

After the preliminary orbits had been obtained, information equations could be generated for the

parameters to be estimated or considered. The total set of parameters included in the estimation and

consider analysis is summarized in Table 6. The parameters can be broadly divided into satellite

independent parameters (parameters common to the modeling for both satellites) and satellite

dependent parameters. The common pa_eters included the non-zonal coefficients of the

geopotential up to degree and order 7, the zonal coefficients to degree 20, GM, the dynamical tide

parameter k 2, the secular zonal rates, the coefficients for 34 ocean tide constituents (degrees 2

through 6 for all prograde tides in GEM-T1 plus selected additional tides). All of the albedo and

emissivity parameters in the UTOPIA Earth radiation pressure model were included, which consists

of zonals of degree 0, 1 and 2 plus an annual variation in the first-degree zonal. The cartesian

coordinates of all eight stations were included also in the parameter set. The satellite dependent

parameter set consisted of the initial satellite position and velocity, 15-day empirical drag

coefficients, the solar radiation reflectivity parameter, the Earth radiation reflectivity parameters for

optical and infrared wavelengths, and the Earth and solar Yarkovsky parameters.

Solution Results and Error Analysis

Many preliminary solutions were performed in order to gauge the sensitivity of the estimate of L

to the set of parameters included in the estimation process. The main variation between the test

solutions was the number Of tidal coefficients estimated. The strategy usually employed in the
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Lageos long-arc solutions is to estimate enough tide coefficients so that most of the dynamical

modeling errors can be absorbed, making some of the less wen-determined tides effectively "garbage

cans" for the residual orbit error. However, this process must be applied with care or too much non-

tidal signal will be absorbed, with the subsequent degradation in the estimate of other parameters of

interest. Thus, the choice of estimated parameters requires a careful balance between too many and

too few parameters. The variations in L as the set of estimated tide parameters was changed were

very consistent with the estimated uncertainty in L, indicating that in the actual experiment, the

results should not be too sensitive to the set of tide parameters chosen for estimation. It should be

noted that there was no a priori information or constraint on any of the parameters in the solution.

The final set of estimated and considered parameters is summarized in Table 7. Only a few

zonals and zonal rates were estimated, leaving the remainder of the geopotential field for consider

error analysis using the standard deviations from the GEM-T1 solution covariance. GM and k2 were

also estimated. The station coordinates for all eight stations were estimated, although one station

longitude was held fixed to avoid the singularity that occurs if the orbit and all station coordinates

are estimated. The set of tides chosen for estimation consisted of all the degree 2 and 3 coefficients

for the prograde tides, and the degree 4 and 5 coefficients for selected diurnal and semidiurnal tides.

The uncertainties in the remaining tides were assumed to be the 2, 6 and 15 mm caps of the

simulation for the semidiumal, diurnal and long-period tides, respectively. This level of consider

error, although much more conservative than the error introduced into the simulation, was employed

to compensate partly for the inability to consider the effect of the stochastic geopotential variations

or the retrograde tides. Both of these errors had been included in the simulation, but the nature of the

stochastic geopotential variations prevents parameterization, and the partial derivatives for the

retrograde tides were unavailable in the version of UTOPIA employed for the simulation.
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The satellite dependent parameters estimated were the initial state, the solar reflectivity

coefficient, and 15-day empirical drag coefficients. The Earth radiation pressure albedo and

emissivity coefficients and the satellite optical and infrared reflectivities were all considered with an

error of 0.03. The Earth Yarkovsky effect was considered at 1 pm/s 2, or about the 15% level. The

solar Yarkovsky effect, which had an error of 15 to 75 pm/s 2 in the simulation, was considered at the

30 pm/s 2 level in the error analysis, equivalent to the conservative assumption that the best model

that will eventually be developed for this effect will be only about 50% accurate.

The results of the six blind solutions are summarized in Table 8, where the difference between

the CSR estimate and the true value of L is listed. The scatter of the simulation solutions was 8%,

and the mean of the differences between the estimate and true value of L was zero. In comparison, a

covariance analysis for each ease, based on considering the effect of errors in the non-estimated

parameters similar to those included in the simulation, indicated that the 1-¢_ uncertainty in the

estimate of L varied between 5 and 7%. The results are displayed graphically in Figure 17, where

each solution is shown with respect to the true value and the size of the 95% confidence interval as

predicted by the consider-eovariance analysis. The eovariance analysis could not consider the effect

of the stochastic error sources and would be expected to predict a smaller uncertainty; otherwise, the

agreement between the simulation results and the covarianee analysis is remarkably good. The

combination of the six simulations, supported by consistent results from the consider error analysis,

indicate that the Lense-Thirring precession should be measurable at the 8% accuracy level. That

only one simulation solution out of the six deviated by as much as 15% is entirely consistent with

this error assessment.

The simulation results include the effects of all modeled errors, but they do not allow one to

quantify the contribution of the individual sources of error. Thus, the covarianee analysis is

necessary in order to identify the error sources which are the major limitations in the accuracy of the
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Lense-Thirring precession measurement. The error in the gravitational model is the primary

contributor to the overall error. The constant errors in the mean values of the Earth's geopotential

and tide model are expected to contribute about 4 to 5%. The effect of errors in the even zonal

harmonics are proportional to the size of the Lageos-3 orbit injection errors, with a conservative

assessment of 3% for each 0.1" error in the inclination. The unmodeled thermal forces were found to

cause a little less than a 3% uncertainty, while the contribution of the errors in the model for the

Earth radiation pressure (reflected optical and reradiated infrared) was approximately 1%. The

uncertainty due to the remaining parameters was generally negligible. The various stochastic errors

not amenable to the consider analysis, particularly the seasonal variations in the geopotential, are

conservatively estimated to contribute an additional 5%.

The quality and consistency of the dual-satellite solution can be further evaluated by comparing

the true value with the estimated value for some of the more significant dynamical parameters. In

Table 9, which summarizes the various solutions, it can be seen that the recovered values are in good

agreement with the true values. The level of error is generally consistent with the current assessment

of the errors in these parameters, although the errors are, in some cases, smaller than currently

obtained. The reduced errors very likely represents the increased strength of the Lageos-1/Lageos-3

combination. It can also be seen in Table 9 that the estimates for J2 and J3 are worse for Cases 1

through 4 than for Cases 5 or 6, yet the accuracy of the Lease-Thirring parameter is not affected.

This result highlights the advantage of choosing an inclination for Lageos-3 supplementary to

Lageos-1. Accurate knowledge of the zonals and their variations is not required for the accurate

measurement of the Lease-Thirring precession, a characteristic which is shared by no other satellite

configuration.

An alternative method of assigning an uncertainty to the estimated value of the Lense-Thirring

parameter is a simplified procedure referred to as a modified worst-case analysis [Ashby et al.,

= =: A.37



Universityof Colorado,manuscript in preparation, 1988], which consists of multiplying the formal

uncertainty of a parameter by the square-root of the number of observations. This approach allows

one to estimate the error in a parameter if all the systematic errors had the worst possible time

dependence for that particular parameter. The formal uncertainty, estimating only the satellite

dependent parameters, was 0.00063. There were approximately 100,000 normal points in the three-

year arc, leading to a worst-ease uncertainty for L of approximately 0.2. Since it is highly

pessimistic to assume that all of the errors have the worst possible time dependence, we may

consider the worst-case uncertainty of 20% to reflect a 3-0 error estimate, which compares well with

a 3-0 error of 24% from the simulation and 21% from the covarianee analysis. This result, while not

as rigorous as a full error analysis, lends additional support to the results of the simulation and

consider-covariance analysis.

Post-Solution Residual Analysis

Extensive analysis was performed on the post-solution residuals of Case 3 in order to evaluate

the fidelity of the adopted error models. A complete analysis of all six eases was not possible in the

available time allocated for this study. Although Case 3 was selected arbitrarily, it is typical of the

eases considered and any conclusions based on this sample should be applicable to the other eases as

well. The residuals from Case 3 are compared to the residuals from a fit to actual Lageos laser

ranges from eight high-precision stations during the interval of January 1, 1986, to January 1, 1988.

In the post-solution residual analysis, the values of all of the dynamical and kinematical

parameters which had been estimated in the combined solution were included in new three-year orbit

fits to the simulated data. The only parameters estimated in these fits were the initial state and the

empirical drag coefficients, since experience has indicated that the estimation of these parameters in

post-solution fits is essential. This is primarily due to the nonlinear convergence properties of the

orbit determination problem, in which several iterations are generally required to obtain a final
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estimate of the initial conditions and the along-track forces. The resulting fit for Case 3 is

summarized in Table 10.

The post-solution laser range residuals can be represented in two ways. The residual analysis

method usually used at CSR consists of mapping the range residuals in each 5-day interval into an

estimate of the mean error for each orbital element (3- or 6-day intervals are also used). This is

essentially equivalent to comparing the long-arc orbit to short-arc fits, except that the orbit element

differences are computed, from an analytical approximation rather than actually converging a larger

number of 5-day fits. The former procedure is considerably more efficient, and tests have indicated

no significant differences in the results. Analysis of the residual errors in terms of orbital elements is

very useful, since it provides insight into the nature and magnitude of the modeling errors which

remain in the long-arc orbit. For example, errors in even-degree ocean tide model coefficients tend

to appear as errors in the inclination and node. Alternatively, the effect of odd-degree tide

coefficient errors appear in the eccentricity and perigee residuals.

The orbital element residual analysis technique, although very useful, is limited to investigating

variations in the residuals with periods greater than 10 days because of the 5-day averaging interval

used. In order to obtain information about shorter period modeling deficiencies (up to a few cycles

per orbital revolution), an alternative method is employed. In this approach, an estimate of a bias

and the along-track orbit error, in terms of an apparent bias in the time of closest approach, is

estimated from the range residuals for each station pass. After removing the biases and a second-

order polynomial from the residuals, the remainder is nearly Gaussian noise, and the rms is a good

estimate of the data precision.

In the following analyses, the 5-day orbital element residuals from the actual Lageos data are

plotted and compared to the corresponding residuals from the simulated Lageos-1 and Lageos-3

data. The spectrum of the orbital element residuals and the apparent time-biases are also compared
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toillustratethefidelityof the error models used in the simulation.

Table 10 summarizes the statistics of the residuals for the real Lageos data and the simulated data

for Case 3. The actual orbital element residuals are plotted for comparison in Figures 18 through 22.

It can be seen in Table 10 tha.t the overall statistics of the simulated data are similar to the actual data

statistics. In particular, the quantity called postprocess noise is nearly identical, indicating

comparable high frequency gravity error, measurement error and station location error in both the

simulated and real data. The other quantifies generally have a higher rms for the simulated data than

for the real data, even though the same parameters were estimated in the actual Lageos orbit fit and

the dual-satellite solution. This is not surprising, because the parameters estimated in a single

satellite solution will accommodate the various errors much better than a solution which includes

two satellites with different orbit parameters. Many of the effects have different signatures for the

two satellites, and a model parameter cannot act as a "garbage can" for errors if its signature does not

match both satellites.

This is precisely the reason why many satellites are required in the determination of an accurate

gravity field model. When more satellites are involved in a solution, the estimated parameters in the

gravity field model are recovered more accurately; they ave less able to absorb other model errors,

which generally have conflicting signatures for the different satellites. The errors will remain,

instead, in the residuals, as evidenced by Table 10. Thus, while it is not possible to produce

residuals from Lageos exactly analogous to the simulated Lageos-1/Lageos-3 residuals, Figures 18

through 22 indicate that a significant level of modeling error has been included in the simulation.

By the reasoning given above, the spectra of the orbital element residuals shown in Figures 23

through 26 cannot be expected to match exactly. The comparison is valuable, however, in indicating

that the error spectrum of the simulated data is generally as complex as the real data, and the

magnitudes of the residual errors are usually significantly larger than those seen in the real data.
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Although the spectra are plotted as a function of frequency, the various peaks are labeled in terms of

period (in days) for convenience.

The spectra of the orbital element residuals are useful in analyzing the long period errors, but for

short period errors, it is necessary to examine the spectra of the time biases. These spectra are

n_isier, since each time-bias solution contains at most 50 ranges, while the 5-day orbit element

solutions may contain over 500 ranges. In Figure 27, the spectra of the time-biases from the

simulated residuals in the region of 6 to 60 days are compared to the spectrum of the real Lageos

time-biases. Figure 28 is a similar comparison for periods less than 6 days. The peaks are labeled in

terms of period (days) in Figure 27 and in terms of frequency (cycles per day) in Figure 28. It can be

seen that the spectra of the time biases from the simulated data are generally as complex as the actual

data, and the magnitudes are similar.

The statistics of the real and the simulated range residuals are summarized in Tables 11, 12 and

13. The overall values for the orbit fit rms, The rms after removing the bias and time-bias, and the

rms after also removing a quadratic polynomial (the true data precision) are all in remarkably good

agreement. Except that the statistics of the simulated dam are the same for each station, it would be

difficult to distinguish between the real and simulated data based on these tables. Similarly, the

statistics of the pass-by-pass biases and time-biases indicate good consistency between the real and

simulated data residuals.

The results of the various comparisons indicate that, taking into consideration the fact that the

Lageos residuals are naturally smaller since a single-satellite solution can accommodate more error

than a dual-satellite solution, the power and spectrum of the simulated residuals are quite similar to

the real Lageos residuals, and the error model used in the simulation has generated realistic, but

generally conservative, levels of modeling error.
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V. ORBIT INJECTION REQUIREMENTS FOR LAGEOS-3

A separate study has been conducted to determine the range of errors in the orbit parameters of

the Lageos-3 satellite which can be tolerated and still obtain a successful measurement of the Lense-

Thirring precession [Casotto, 1989]. Because this issue has been identified to be particularly crucial

in light of the known (or unknown) performance characteristics of some of the possible launch

vehicles, it was studied in more detail than was possible in a limited set of simulations. The critical

orbital elements are the semimajor axis, inclination and eccentricity. There is no dependence on the

initial value of the other orbital angles (node, perigee and mean anomaly) since these angles all go

through large changes over the three-year period. For example, the Lageos node will have precessed

through one full revolution with respect to inertial space by the end of the three-year mission. The

analysis considered all possible combinations of semimajor axis, inclination and eccentricity errors

using an approach called the method of equal influences, and the full GEM-TI covariance for the

even zonals was used. The results indicate that each 0.1 ° error in inclination and 15 1an error in

semimajor axis causes an uncertainty in the measurement of the Lense-Thirring precession of about

3%. Since the other sources of error depend less on the cancellation effect of the supplementary

inclinations, this would be the dominating source of error if the inclination error were to exceed 0.5 ° .

The range of allowable eccentricity values is so large that it is not a consideration, and the range

of the allowable semimajor axis error is also not particularly restricting, so that the result of 3% per

0.1 ° error in inclination is conservative. For example, if there were no significant error in the

eccentricity or semimajor axis of the Lageos-3 orbit, the same 0.1 ° error in inclination would result

in an uncertainty of approximately i.7% in the Lense-Thirring measurement. The errors in the

GEM-T1 gravity model are also considered to be pessimistic with respect to the quality of the

gravity models that are likely to be available in the future. The GEM-T2 gravity model, which is a

significant improvement over GEM-T1, is already available [Marsh et al., 1989]. There is always
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the possibility, however, that the covariance matrices from the gravity model solutions are somewhat

optimistic. Furthermore, because of variations in the mass distribution of the Earth, a gravity model

determined during one decade may not be entirely accurate during the next. Thus, a degree of

conservatism in the assumed errors in the geopotential model is retair_d by using the GEM-T1

predicted errors.

VII. SUMMARY AND DISCUSSION

A preliminary analysis of the measurement of the Lense-Thirring precession using two Lageos

satellites in supplementary orbits indicated that the measurement should have an uncertainty of

approximately 10% [Ciufolini, 1989]. In that study, a fairly large number of error sources were

considered, but the analysis used a rather simplistic approach which compared the effect of a given

force model error on the node of the satellite orbits with the size of the Lense-Thirring precession.

Although the analysis is useful in a qualitative sense and can be used to identify error sources which

are likely to be significant, the approach cannot be used to accurately quantify the uncertainty in the

Lense-Thirring measurement, since the orbit determination problem falls in the domain of general

nonlinear parameter estimation. Geometric arguments cannot include the complex nonlinear

interaction that takes place between the various estimated quantities and the satellite orbit during the

orbit and parameter determination process. The orbit plane is only an imaginary construct, useful for

perturbation analyses, and as a consequence, the concept of"measuring the absolute inclination" of a

satellite orbit is vague and ill-defined. To conclude that the "absolute inclination" of the Lageos

orbit can or cannot be "measured" to a specified accuracy is to make a statement that cannot be

verified in any real sense.

The estimation approach used in the CSR simulation and covariance analysis is rigorous and

naturally includes all interactions between the various error sources. It is not necessary to consider

the measurement as the determination of two large numbers (the magnitude of the Lageos-1 and
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Lageos-3noderates)computedseparately, based on observations from an unsteady intermediate

structure (the Earth), and subtracted with a precision of a part in 10s. Parameterizing the Lense-

Thirring effect and the many potential sources of error in the context of a dual-satellite, least-squares

estimation problem is the only method that can rigorously and quantitatively determine the real

uncecadnty in the result. This method is limited only by the fidelity of the error model and

completeness of the parameterization. Concerns about the accuracy of the results must be addressed

in the context of deficiencies in assumptions used for the model errors. The ability of laser ranging

observations of Lageos to accurately measure a dynamically defined quantity cannot be based on the

vague assertion that centimeter-level ranges are not adequate. Given a realistic and complete error

model, if a quantity affects the dynamic motion, it will be measurable to some accuracy level, and

that accuracy level will be determined through the complex interaction of the data distribution, the

measurement errors, the observation modeling errors and the force modeling errors.

For the experiment proposed here, the dominant error sources have been identified as the

geopotential, ocean tides, and the thermal thrust forces due to solar heating. The whole of the non-

zonal geopotemial and ocean tide error is estimated to contribute no more than 5%, while the

thermal thrust forces contribute approximately 3% total for both satellites. The combination of all

other random and stochastic errors is conservatively estimated to contribute another 5%. Earth

radiation pressure is not insignificant, but still contributes only about 1% to the error. If the

inclination of the Lageos-3 orbit departs from the desired 70.2 _', the results are degraded, with the

total error approaching 10% for an inclination error of 0.2 ° for the level of geopotenxial error

assumed for this investigation.

This error budget, summarized in Table 14, is considered to be conservative for a number of

reasons. The dynamical and measurement model errors adopted were generally conservative,

resulting in residuals for the simulated data which look like, but have larger magnitude, than the
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actual data. The errors in the gravity models that will be available in the future are likely to be

significantly smaller than those adopted in this analysis, which were based on GEM-T1. In fact,

GEM-T2 and TEG-1 are models which show substantial improvement over GEM-T1 [Marsh et al.,

1989; Tapley et al., 1988b]. The effect of stochastic and seasonal variations in the low-degree

geopotential harmonics can be reduced by the estimation of annual values for these parameters. The

effect of ocean tide errors can also be reduced by including additional years of tracking data in the

measurement, so that the long-period variations average better. The recent progress in modeling the

thermal drag forces on Lageos indicates that much of this effect may be modelable, removing a

significant error source from the measurement. Furthermore, with the improved understanding of the

thermal forces acting on Lageos, it should be possible to choose an optimal spin-axis orientation for

Lageos-3 to minimize the thermal drag forces, and reduce or remove this area of uncertainty in the

force modeling. While there is no control over the Lageos spin-axis orientation, the orientation

chosen for Lageos-3 in the simulation was considered to be a worst-case. The magnitude of the

thermal drag was near its maximum value, but the spin-axis was sufficiently far from a polar

alignment to cause significant periodic variations as well. Insertion of Lageos-3 into orbit so that its

spin-axis is in the equator would significantly reduce both the Earth and solar thermal forces.

An important concern in this analysis is whether any significant error source has been ignored. It

could be argued, for example, that the errors assumed for the thermal thrusts are optimistic, since the

existing model does not completely model the observed variations in Lageos drag. However, even

assuming that the thermal forces were 100% larger than considered here and that the solar heating

component cannot be modeled, an assumption that appears unlikely based on the existing analysis,

the error estimate increases from 8% to only 10%. In order to affect the error estimate of the Lense-

Thirring measurement significantly, root-sum-squaring an additional 12% to increase the error

estimate to the 15% level, for example, would require forces whose effects are four times larger than

w
A .45



the thermal forces, yet these large effects must be indistinguishable somehow in the current Lageos

residuals. While there are certainly significant systematic errors remaining in the Lageos residuals,

they can generally be explained using known physical effects, such as the year-to-year fluctuations in

the seasonal changes of the Earth's gravity field. These errors have been included in the analysis

leading to the 8% overall error estimate. The thermal forces on the Lageos satellite represent

essentially the limit of the forces that can be affecting the satellite significantly. Ciufolini [1989] has

examined a wide variety of lesser forces and found that the maximum effects of those not already

considered in this analysis were generally less than a few tenths of a percent. Since reasonable limits

on the existing forces have been determined and used in this simulation, the existence of a large,

unsuspected force with a new physical mechanism must be considered a very unlikely event. A

similar argument applies to possible measurement errors which mus t be large enough, have just the

right time dependence, and must be common to all stations over the three-year period. While such

effects are impossible to rule out, they must be considered to be remote possibilities and should not

be included in a 1-o error estimate. It would appear that the 3-0 error estimate (or 99% confidence

interval) of 24% would adequately include the effect of such unlikely errors.

vn. CONCLOSION

Given a sufficiently accurate launch vehicle and a moderate effort to track Lageos and Lageos-3

during a three-year mission, the Lense-Thirring precession of the two satellite orbit planes should be

detectable with a high degree of confidence. Unce_nties in every aspect of the modeling were

considered in order to have confidence that the error models adopted in the CSR simulation were

complete and realistic. In addition to a pessimistic level of observational error in the simulated

ranges, errors were included in nutation, precession, Earth orientation, plate motion, station

locations, gravitational forces and nongravitational forces. The simulation accounted for over 1500

individual error sources. The tracking scenario was pessimistic as well, assuming only eight stations
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which obtained approximately 50,000 normal points for each satellite during the three-year mission.

The results indicate that a thr_-year mission using laser ranging to a pair of Lageos-type

satellites, in inclinations of 109.8 ° and 70.2 °, can determine the Lense-Thirring precession to an

accuracy of 8%. This estimate is based both on a comprehensive consider-covariance analysis and

the results of a limited Monte-Carlo analysis in which six simulated data sets were processed without

knowledge of the truth value for the Lense-Thirring parameter or any of the other error sources.
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Table 1: Tracking scenario
D

• Eight globally distributed stations selected from among existing sites

• Laser range data generat_ at 3-minute intervals when satellites were in view of

station during scheduled tracking shift

• Single 8-hour tracking shift (not optimized for either satellite)

• Four stations track only 5 days a week

• Resulting passes randomly decimated (75% of all passes were eliminated)

• Combination of decimation and fixed tracking schedule caused stations to

'disappear' for periods of days or weeks, simulating weather outages and

downtime

me

z

U

m

IN

m

Table 2: Measurement model errors m
w

5 cm random errors in station coordinates

1 mas random noise in 5 day values ofxp, yp, UT1

1 cm/yr random error in all plate velocities

Random precession and nutation errors:

• 0.1 mas/yr random error in precession

• 1.0 mas noise in 5 day values

• 0.1 mas random errors in long period components

• 0.05 mas random errors in short period components

5% random errors in individual station tide corrections

Observation errors:

• 1 cm random measurement noise

• 2 cm stochastic range biases

• 2 microsecond stochastic time tag errors

• 0.2% stochastic troposphere biases

i
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m
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m

J

m
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Note: All errors are 1-_.
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Table 3: Dynamical model errors

w

• GM error of 0.001 kmS/sec 2

• Geopotential errors derived from GEM-T1 covariance

• "]2and'/3errorsof 10×10-12/yr

!

• 20, 30 and 40% errors in semidiurnal, diurnal and long period tides,

respectively,with maximum errorsof2 ram, 6ram, and 15rnm.

• Stochasticseasonallyvariationsinlow-dcgrccgravitycoefficients

• 3% dynamical solidEarthtide(k2)

• Radiation pressure errors:

• Errors of 0.01 in solar, optical and infrared reflectivities
• 5 km error Earth shadow radius

• 0.03 in all Earth albedo and emissivity coefficients (equivalent to

3% of total available Earth radiation at the satellite)

• 'Drag' model error was composed of a combination of three error

sources:

• 10-30% error in Earth Yarkovsky

• 100% errorin solar Yarkovsky

• Stochastic drag with a mean of about -1 pm/s 2, an rms about the

mean of 1 prn/s2; and a correlation time of approximately 1-2 days

Note: All errors are 1-o.
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Table 4a: Comparison of predicted Earth radiation pressure effect on Lageos node
I

At-/(mas/yr)

optical only

Af_ (mas/yr)

infrared only

1

UTOPIA (average of 1980 and 1982) *

Rubincam and Weiss [1985]

Sehnal [1981]

-2.4

-36.8 t

1

m

1

l

* Node rates determined from 1-year arcs are not necessarily equal to long-term average.

t This value appears to be a miscalculation and too large by at least a factor of 10.
t_m

1

m

1

Table 4b: Comparison of Earth radiation pressure effect on Lageos-1 and Lageos-3 I

Optical Infrared Total

(mas/yr) _ (mas/yr) At-/(mas/yr)

Jo to_ "/2 total

1

m

!

Lageos-1 * -4.0 -0.9 -2.2 -1.9 -2.8

Lageos-3 * +3.3 +0.9 +2.2 +2.2 +3.1

1
1

tam
l

Net effect t 0.0 +0.3 +0.3 m
1

1

* Node rates determined from 1-year arcs are not necessarily equal to long-term average.

* Net effect on sum of Lageos-1 and Lageos-3 nodes, assuming identical size, mass and reflectivity.

I
m

1

m
1

1
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Table 5: Simulated data results for a typical case (blind data Case 3)

..m...

w

Smfion Lageos-1 Lageos-3 Lageos-1 Lageos-3 Dam

1D # obs # obs data fit* data fit* error_*

7907 4952 6116 38 56 2.1

7051 5856 6186 38 52 2.5

7597 7560 4652 39 56 1.9

7210 4386 5139 37 51 2.3

7064 6167 7669 37 62 2.5

7840 7565 7853 35 54 2.3

7837 6306 6329 34 57 2.4

7090 5071 4920 34 60 2.4

TOTALS 47863 48864 36 56 2.3

w

* RMS in cm

Notes:

1) Fit RMS were obtained after estimating initial conditions, solar reflectivity, and

15-day empirical drag (where necessary, GM and k2,were estimated also).

2) Data error RMS indicates observation error introduced into simulated data,

consisting of 1 cm noise, 2 cm stochastic range biases, 0.2% stochastic

troposphere biases,and 2 microsecond stochastic timing biases (all 1-o errors).
The difference between the data error and the data fit indicates the effect of the

dynamical and observational model errors prior to the simultaneous adjustment of

the various parameters in the LT solution.
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Table6: Parametersetavailablefor analysis

• 7 x 7 geopotential + zonals through degree 20

• oM,k2,J2andJ3
• 34 ocean tide eonsiituents (degrees 2-6) (GEM-T1 +)

" J0, J1, J2 model for Earth albedo and emissivity + amplitude of

annual variation ofJ 1

• Station coordinates (all 8 stations)

• Satellite parameters:
• Initial position and velocity

• 15-day empirical drag

• solar radiation pressure refleetivity

• Earth radiation reflectivities (optical and infrared)

• Earth and solar Yarkovsky parameters

ili

III

iR

B

II

606 Total Parameters J

Table 7: Solution and consider parameter set lli

Geopotential: J2, J3' '/4, Js, ./2 and./3 estimated, remainder of the 7 x 7

geopotential and zonals to degree 20 considered using GEM-T1 eovariance.

GM and/o 2 also estimated.

Ocean tides: Degrees 2 and 3 estimated for all constituents. Degrees 4 and 5

estimated also for diurnal and semidiurnal tides: (PI1, P1, $1, K1, KI+--,

PSI1, PHI1, 7'2, R2, $2, 1(2, 271a). Remainder considered using 2,

6, and 15 mm errors for semi-diurnal, diurnal and long period tides.

Mean station coordinates estimated.

Satellite position and velocity, 15-day empirical drag, and solar radiation
pressure reflectivity estimated.

• Earth radiation reflectivity for optical and infrared considered at 0.03.

• Earth albedo and emissivity parameters considered at 0.03, 0.01 for annual
variability.

• Earth Yarkovsky estimated during UTOPIA runs by examining average

drag; remaining error of ~1 pm/s 2 was a considered error. Solar Yarkovsky

error of 30 prn/s 2 considered.

m
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Table 8: Results of Lense-Thirring simulation blind analysis

w

True Value of UT/CSR Solution Estimated

Case L-T Scale Solution Difference Uncertainty

1 0.55 0.47 0.08 0.06*

2 1.38 1.32 0.06 0.06

3 0.08 0.02 0.06 0.05

4 0.86 0.83 0.03 0.07

5 1.83 1.98 -0.15 0.07

6 0.94 1.02 -0.08 0.07

Mean of difference = 0.0 RMS of difference = 0.08

0.06 can interpreted as 6% of the nominal General Relativity prediction of 1.0

v
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Table 10: Simultaneous solution post-fit summary for Case 3

RMS of orbit element residuals

Lageos Simulated Simulated
Parameter (1986--1988) Lageos-1

a (mm) 0.6 0.6 0.7

e (billionths) 1.9 5.9 6.4

i (mas) 0.9 1.4 1.8

f2 (mas) 1.6 2.0 2.2

co (mas) 59 291 283

rms fit (cm) 5.6 * 9.7 t 9.9 *

postprocess rms (cm) § 4.3 4.2 4.7

m

Residuals after adjustment of pararneters for Lageos only

1 Residuals after simultaneous adjustment of common and local parameters

§ Post-fit residual analysis removing 5-day mean orbit element errors; measurement errors
station coordinate errors and short period force model errors are the limiting factors.

A.61



Table 1 la: Summary of range residual analysis for Lageos (1986-1988)
D

Raw Bias/Time-bias Poly
Sta on Passes Obs RMS R__M_S. RMS

7210 HOLLAS 455 3894 5.5 1.5 1.2

7109 QUINC2 885 10982 4.0 0.8 0.6
7110 MNPEAK 1045 11515 4.3 1.0 0.7
7105 GRF105 765 7634 3.8 0.8 0.5
7090 YARAG 755 8608 4.0 0.9 0.6
7839 GRAZ 459 4282 4.8 1.4 1.2
7840 RGO 900 8485 4.6 2.0 1.7

MAZTLN 524 5617 4.5 1.1 0.7

TOTALS 5788 61017 4.3 1.2 0.9

=

I

J

N

l

l

Table 1 lb: Multiple pass observation bias and time-bias solutions for Lageos (1986-1988) i

Bias RMS Time-bias RMS
Passes (era) (microsec_

7210 HOLLAS 413 3.6 19.1

7109 QUINC2 874 2.4 15.5
7110 MNPEAK 1023 3.0 19.2
7105 GRF105 743 2.3 17.6
7090 YARAG 736 2.7 17.4
7839 GRAZ 454 3.4 18.7
7840 RGO 862 3.2 18.0
7122 MAZILN 511 2.9 23.4

J

R
m

!

m
Ib

Notes: 1) Raw RMS = RMS of residuals before any pass parameters are estimated and removed but after
the removal of long period orbit errors.

2) Bias/Time Bias RMS = RMS of residuals after most of orbit and station errors are removed in
the form of a bias and an along-track error (in terms of an apparent timing bias at the point of
closest approach).

3) Poly RMS -- RMS of residuals after a second-order polynomial has also been removed. This is

an estimate of the true noise of the data.

4) RMS of bias and time-bias solutions is the scatter of all the pass solutions about the average
bias and time-bias for each station. This is a measure of the level of short-period orbit errors as
well as biases in troposphere or station coordinate. Passes for which there was inadequate

separation between the bias and time bias solutions are not included.
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Table 12a: Summary of range residual analysis for Lageos-1 (Case 3)

v

7210
7051
7837
7064
7090
7597
7840

7907

Raw Bias/Time-bias
Sta on Passes RMS RMS

HOLLAS 389 4383 3.7 1.1

QUINCY 475 5852 3.8 1.1
SHAHAI 580 6297 5.4 1.0
GRF064 496 6162 3.5 1.1
YARAG 467 5066 4.1 1.2
WET597 580 7549 4.1 1.1
RGO 578 7559 4.0 1.2

ARELAS 420 4947 4.5 1.1

TOTALS 3985 47815 4.2 1.1

Poly

0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9

0.9

Table 12b: Multiple pass observation bias and time-bias solutions for Lageos-1

=

w

Bias RMS Time-bias RMS

Station Passes (cm) (microsec)

7210 HOLLAS 374 2.9 14.8
7051 QUINCY 461 2.9 14.6
7837 SHAHAI 564 3.5 25.4
7064 GRF064 486 2.4 14.1
7090 YARAG 438 2.8 18.9
7597 WET597 566 2.5 17.6
7840 RGO 562 2.8 15.6
7907 ARELAS 405 3.5 20.0

w

m

m

Notes: 1) Raw RMS = RMS of residuals before any pass parameters are estimated and removed but after
the removal of long period orbit errors.

2) Bias/Time Bias RMS : RMS of residuals after most of orbit and station errors are removed in

the form of a bias and an along-track error (in terms of an apparent timing bias at the point of
closest approach).

3) Poly RMS : RMS of residuals after a second-order polynomial has also been removed. This is
an estimate of the true noise of the data.

4) RMS of bias and time-bias solutions is the scatter of all the pass solutions about the average
bias and time-bias for each station. This is a measure of the level of short-period orbit errors as
well as biases in troposphere or station coordinate. Passes for which there was inadequate
separation between the bias and time bias solutions are not included.
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Table 13a: Summary of range residual analysis for Lageos-3 (Case 3)

7210
7051
7837
7064
7090
7597
7840

7907

Raw Bias/Time-bias

Station Passes Obs RMS RMS

HOLLAS 353 4650 4.3 1.1
QUINCY 437 6109 4.1 1.1
SHAHAI 488 6316 5.6 1.1
GRF064 439 6184 3.7 1.0
YARAG 407 5133 4.5 1.3
WET597 536 7665 4.8 1.2
RGO 534 7846 4.8 1.2
ARELA$ 374 4915 5.4 1.1

TOTALS 3568 48818 4.7 1.2

Poly
RMS

0.9
0.9
0.9
0.9
0.9
0.9
0.9

0.9

0.9

_m

I

W

½
g

Table 13b: Multiple pass observation bias and time-bias solutions for Lageos-3
L

lU

Bias RMS Time-bias RMS
Station Passes (cm) (microsec)

7210 HOLLAS 339 2.4 23.1

7051 QUINCY 428 2.5 20.6
7837 SHAHAI 478 3.4 29.4
7064 GRF064 424 2.5 19.2
7090 YARAG 389 2.8 26.9
7597 WET597 520 3.0 23.3
7840 RGO 521 2.8 22.2
7907 ARELAS 360 3.3 33.7

m

fll

l

D

II

Notes: 1) Raw RMS = RMS of residuals before any pass parameters are estimated and removed but after
the removal of long period orbit errors.

2) B!a_im_e_ B!__R_MS-- RMS of residuals after most Of orbit and station errors are removed in
the form of a bias and an along-track error (in terms of an apparent timing bias at the point of

closest approach).

3) Poly RMS = RMS of residuals after a second-order polynomial has also been removed. This is
an estimate of the true noise of the data.

4) RMS of bias and time-bias solutions is the scatter of all the pass solutions about the average
bias and time-bias for each station. This is a measure of the level of short-period orbit errors as
well as biases in troposphere or station coordinate. Passes for which there was inadequate

separation between the bias and time bias solutions are not included.
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Table 14: Estimated error budget for Lense-Thirring measurement

Geopotential (other than even zonals) + tides

Earth radiation pressure

Uncertainty in other relativistic effects 1

Earth- and solar-induced thermal forces 2

Even zonal geopotential (per 0.1" inclination injection error) 3

Other errors (such as random and stochastic errors included
in simulation but not in covariance analysis) 4

5%

1%

1%

3%

3%

5%

assuming 0.1" injection error or less

assuming 0.2" injection error

assuming 0.3" injection error

RSS Error

8%

10%

12%

w

Notes:

1) The only significant uncertainties are in the amount of geodesic (or de Sitter) precession and in

the exact value of the PPN parameter 7.

2) The effect of the solar heating was based on the conservative assumption that no modeling is
possible.

3) The result of 3% error per 0.1" inclination injection error assumes an equal influence of error in
the semimajor axis and eccentricity, but the bounds on the semimajor axis and eccentricity
injection errors are less demanding than the bounds on inclination. As a result, the predicted
effect on the Lense-Thirring estimate is consideredto be conservative.

4) Consider-eovariance analysis results were augmented by an additional 5% to account for the effect
of time-correlated stochastic errors (such as the seasonal variations in the geopotential, drag, and
observation biases), which were included in the simulation, but could not be included explicitly
in the covariance analysis.
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EARTH

Figure 9. Schematic diagram of effect of infrared heating of Lageos. The thermal lag

angle is taken to be 90 ° to illustrate that there is an along-track acceleration
due to the Earth's infrared radiation (wavy arrows) but the actual angle is

closer to 55 °. (Figure taken from Rubincam [1987a])
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Orbit Injection Error Analysis
for the Proposed

Lageos IH Mission

Stefano Casotto

Center for Space Research

The University of Texas at Austin, Austin, Texas
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m

Abstract. An analysis is presentedof the orbital injection errorsfor the Lageos III satellite
mission. Serial methods are introducod for the solution of the Invexs¢Problemin the Theoryof

Errors. The novelty of the present approachis the use of the full gcopotentialcovariancematrix
in the expression of the orbit injection errors.The GEM-T1 covariance matrix is used in the

computations.It is found thatthe most stringentconstraintis on inclination,whose nominalvalue
must be realized within approximately0.2 degrees for the recovery of the Lonse-ThJrdng

precession to be _cessful.

1. The Lageos III Experiment

The Lageos III experiment is designed to measure the Lense-Thirring precession _.--r of the

orbital plane of a satellite as predicted by Einstein's General Theory of Relativity. The Lense-

Thirring precession only depends on the orbital semi-major axis and eccentricity and on the

angular momentum of the central body (Lense and Thirring, 1918). For a satellite at Lageos

altitude, t2_.. r = 31 miUiarcsee/year. The impossibility of separating such a small effect from

the Newtonian precession of about 126 deg/year becomes apparent when one considers that the

uncertainty in the classical precession due to the standard error in the value of the quadmpole

moment of the Earth is estimated to be =174 milliarcsec/year based on GEM-T1 (Marsh et al.,

1988).

To overcome this difficulty Ciufolini (1986) proposed the use of two satellites in a configuration

that effectively reduces the uncertainty in the nodal precession caused by the errors in the zonal

harmonic coefficients of the gravity field of the Earth.

The theorem from Celestial Mechanics that provides the basis for the Lageos III experiment is

introduced below.
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1.1 The Precession of Satellites with Supplementary Inclinations

It is well known that the J2 harmonic of the geopotential field causes a secular variation of the

longitude of the node of a satellite orbit which depends on the cosine of the orbital inclination.

That the same kind of modulation also characterizes the secular motion of the node when all the

multipole moments of the geopotential are taken into account is less obvious.

We want to prove that two satellites with equal semi-major axes and eccentricities and supple-

mentary inclinations have equal and opposite nodal precession rates. Since a formal proof is

not easily found in the literature, one is presented here.

According to the Newtonian Theory of Gravitation the secular motion of the node is caused by

the even zonal harmonics Jz_ k= 1,2..... of the central body and is given by one of Laplace's

Planetary Equations (Brouwer and Clemence, 1961)

_2(a,e,i, J) = 1 ORs (1)
na2(1 - e2) _ sin i 0i '

where J is the (infinite dimensional) vector of the even zonal harmonics and the secular dis-

turbing function R a can be expressed as

- _ F(2_)o_(i)Gf,zk)ko(e)J_ (2)
k=!

in terms of the inclination functiom Ft,,w(0 and the eccentricity functions Grin(e) CKaula, 1966;

Caputo, 1967).

In order to find the dependence of _ on the inclination we only need the expression for the in-

clination function appearing in (2). Kaula (1966) and Caputo (1967) derive the general ex-

pression for F_,(0, which can be specialized to

k (-1)'(2k-t)!! sin_-,_i (3)

Substituting this expression into the perturbing function (2), taking the partial with respect to

inclination and using the result in (1), we fred that the motion of the node is given by
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wherethe function

_2(a,e,i, J) = D(a,e,i, J) cos i
ha2(1 - e2)½

(4)

_ l.t'_ fae)z_J_ G(z_y,o(e)___(-1)'(k- t)[2(2k- t)- I]!!

/_=1 I=0

can easilybe seento have the property:

D(a,e,i, J) = D(a,e, _ - i, J).

sin2(k-t-Di (5)

(6)

It then follows from (4) that the secular motion of the node has the property

_(a,e,i, J) = - _(a,e, _ - i, J), (7)

r which proves the theorem.

1.2 The Residual Motion of the Mean Node

w

The best way to see how the theorem introduced above helps in reducing the error in the classical

precession of the node is through the introduction of the mean node of a two-satellites config-

uration, defined as the spatial average of the nodes of the two satellites (not to be confused with

the average node which conventionally indicates a time average).

If we now indicate with _ = _(a t, e t,/, J) and _._tt = _(a m, ettt, im, j) the nodal precessions

of Lageos I and Lageos HI respectively, then the classical motion t_* of the mean node is given

by

1
fi*= T (£f + (8)

If the two sets of relevant orbital elements only differ in that the inclinations are supplementary,

eqs. (7) and (8) show that the newtonian motion of their mean node is zero.

However, the mean node is also subject to the Lense-Thirring precession. This can now effec-

tively be separated because, as will be shown in the next sections, the error in the classical
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motion of the mean node is of second order in the standard errors AJ of the even zonal har-

monies and the standard errors Aa, Ae, Ai of the orbit elements of the second satellite relative

to its nominal values.

g

Ug

The orbital elements of Lageos Ill can be expressed in terms of the elements of Lageos I as

follows

alli= al + Aa

e Ill = e I + Ae

illl = g _ il + Ai

(9)

where An, Ae, Ai are the orbit injection errors of Lageos HI.

Substituting (9) into (8) and expanding to first order we get the residual classical motion of the

mean node

where

_, 1 ,A.I
=-_- z_ta, e I, n - iI, j), (10)

z6
A_(a,e,i, J) An+ ae + ai= Ol

(11)

The partials in (11) can be easily computed from (4) and (5). The magnitude of the residual

precession _* is seen m be of first order in the orbit injection errors.

....... - : _ = .

A successful experiment requires that the magnitude of the residual precession be known with

an error of 10%, or =3 milliaresec/year, in order m have high confidence that the Lense-Thirring

precession has been observed. Since there are many other error sources to be considered, it is

desirable to keep the contribution from orbit injection errors small. Thus for this analysis a cri-

terion of 3%, or =1 milliarcsec/year, is adopted in order m establish the orbit injection error

tolerance for Lageos III.
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2. Orbit Injection Error Analysis

2.1 Uncertainty in the Residual Motion of the Mean Node

The uncertainty in the value of the residual precession (10) of the mean node is mainly due to

errors AJ in the even zonal harmonics of the geopotential, and to a negligible extent to the un-

certainty in the orbital parameters of Lageos I. We can therefore write that the error in f* is

given by

Aft* = _ AJ, (12)

where the vector of partials is given by

Equation (12) expresses the fact that the error in the residual motion of the mean node is of

mixed second order in AJ, Aa, Ae, AL

The values of the second partials in (13) are shown in Table 1 for the first 14 even zonal har-

monic coefficients.

a2f
aaaJ,,

2 .2651918616E+09

4 .2071033701E+09

6 .7250662102E+08

8 .7626665012E+07

10 -.6041665073E+07

12 -.4168202102E+07

id -.1441783036E+07

16 -.2682388852E+06

18 .1805487432E+05

20 .3553240017E+05

22 .1516367641E+05

24 .3774497061E+04

26 .3538437145E+03

28 -.1803288872E+03

-.1636381245E+09

-.2236274716E+09

-.1148193218E+09

-.1603424227E+08

.1587939535E+08

.1316352997E+08

.5320337075E+07

.1132910910E+07

-.8590093390E+05

-.1880562787E+06

-.8836718616E+05

-.2401591242E+05

-.2440730477E+04

.1340332113E+04

-.7495930711E+09

-.9867064123E+08

.1533258189E+09

.1098118095E+09

.3856354086E+08

.6321912181E+07

-.1302456918E+07

-.1352577907E+07

-.5278565170E+06

-.1184768056E+06

-.4817560266E+04

.9031036604E+04

.4667651009E+04

.1334580865E+04

Table 1. Second Partial Derivatives of Nodal

[mas/year/km],[mas/ye_/100], [1/ye_/60000]

A.96

Precession Rate: Units are



I

2.2 The Inverse Problem in the Theory of Errors

The normal use of equation (12) is in the context of error propagation, where the error in the

residual motion is found in terms of the orbital injection errors. In the present case, however,

the situation is reversed, since we need to determine (bounds for) the Lageos III orbital injection

errors on the basis of the a priori error for the residual motion. The difficulty lies in the fact that

we have only0ne _ation to work with, and therefore _e solution is not unique. _ This=problem

is called the Inverse Problem in the Theory of Errors, and the only place in the literature where

it was found to be treated is Shchigolev (1965), where the Method of Equal Influences is pro-

posed to find a solution in terms of limiting absolute errors. We will introduce this method in

the next section.

Ul

m

I

I

Ig

2.2.1 Maximum Error Analysis Ig

The propagation of the maximum error is the crudest, and most restrictive, method in the theory

of errors. However, it gives us the opportunity to introduce the concept of equal influences, upon

which we will elaborate later.

il

m

io

Propagation of maximum error leads to rewrite (12) in the form
Ill

where the vertical bars around the vectors of partials indicate that the absolute values of the

components !s to beltaken, and where (13) has been used.

According to the method of equal influences, the three terms on the r.h.s, of (14) are then as-

sumed to have equal (positive) values. A justification of this assumption is not easily given,

but its similarity to the Bayesian point of view in the Theory of Probability may easily be ap-

preciated, along with all the ensuing controversies.

Then it follows _t=

m

I
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I-"°1]-'8adjz_ AJzt

8aMz_ _z_

"°11-'Oa3J_ AI_

(15)

Using the values from Table 1 and identifying the errors AJt with the standard deviations of the

GEM-T1 coefficients shown in Table 2, we obtain

IA_!< 1.32 lma
I_l_<o.oi
I_1 _<o.ol deg

(16)

An alternative method is to take as zero two of the three obital injection errors, as was done by

Casotto and Ciufolini (1987). Then it is possible to solve for the only remaining error and the

bounds thus found are exactly three times as large as those in (16).

.L

i m

| _.-

t

2.2.2 Covariance Analysis

The orbital injection errors should be correctly regarded as random variables. Their character-

ization is therefore given in terms of the first two moments of their frequency distributions, or

their means and covariances, respectively. Such a characterization is complete in the case of

normal distributions. As is usual, all means will be assumed to be zero. Further, we can con-

sider the errors appearing on the r.h.s, of (12) as divided into two mutually independent sets of

random variables {AJ} and {Aa, Ae, A/}. This follows from the assumption that the orbit in-

jection errors only depend on the satellite launching apparatus, and not on the gravity field of

the Earth.

In order to find the second order statistics of the random variables, we first take the square of

both sides of equaton (12)

4(_,)2 [ _a* 1 8a* I T-_-j_AJ_[ aj j (17)

A.98



m

If for compacmess we now define the vectors

5_. :h
_a_J

h,j- _2h
_e_J

_2h
t_ - _i_j.

(18)

we can expand (17) in the form

4 (_*)2 ----_aJ _/_LJT k_j (An) 2

+2h_jajar h._aoai
+ 2 h,j AJ,_ T h'_l AeAi

(19)

We can now apply the expectation operator E['.'] with respect to both sets of random variables

identified above and use their independence to obtain

"T
4 4, = _a.l P t_aj O'_a

+h.jPhT_

+ h_ P h_ 4 (20)
• "T

+ 2p_. D_ P D,.j %a,

+ 2pa i t_ P t_._ OoCri

+ 2Pei heJ P h'_l OeOo _.

where the covariance matrix P = E[AJAJ T] of the even zonal harmonic coefficients appears,

and_v_an_ _,_,'_tw_ntwo=_dom_a_ab]es_ anday,w_and y_nd for_y
of a, e, i, has been rewritten in terms of the total correlation coefficient p_ and the variances

= : ::: = :

ax and (_r The elements of P up to degree 28 are displayed in Table 2._,=_ _ _ _ .....

Several things should be noted about the error equation (20). In the first place, equation (20)

defines a quadric surface in %, (_,, ai -space. Since the nature of a quadfic is determined by the

eigenvalues of the associated matrix, inspection of (20) reveals that the type of quadric, for a

A.99
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i_. _

2 2

2 4

2 6

2 8

2 10

2 12

2 14

2 16

2 18

2 20

2 22

2 24

2 26

2 28

4 4

4 6

4 8

4 10

4 12

4 14

4 16

4 18

4 20

4 22

4 24

4 26

4 28

6 6

6 8

6 10

6 12

6 14

6 16

6 18

6 20

6 22

6 24

6 26

6 28

8 8

8 10

8 12

8 14

8 16

8 18

8 20

8 22

8 24

8 26

8 28

10 10

10 12

10 14

.16354743386413E-18

-.44255031142273E-18

.57372102475274E-18

-.82943963924300E-18

.69297539737869E-18

-.74864689655563E-18

.43322746149793E-18

-.77739696176188E-18

.82899281204938E-18

-.16101555933395E-17

.14709918927718E-17

-.14275625608520E-17

.80794594705213E-18

.27696515098380E-18

.12272428479326E-17

-.16293048932063E-17

.23862161543863E-17

-.20594222289284E-17

.22350957089756E-17

-.13661327627724E-17

.23157825799380E-17

-.24963911640746E-17

.46819637432056E-17

-.42778006417160E-17

.41073787756931E-17

-.23452550266630E-17

-.66543282896704E-18

.23622663372187E-17

-.35123533205048E-17

.33845001209633E-17

-°36614960476057E-17

.26810329289111E-17

-.37982912074692E-17

.42960385117915E-17

-.70190894835867E-17

.66297319695961E-17

-.61064099387155E-17

.36662592168055E-17

.17523420880234E-18

.55321349322923E-17

-.56190839300943E-17

.66124793356412E-17

-.53309868517976E-17

.72017054640601E-17

-.73458936194835E-17

.11193280408343E-16

-.10316100024246E-16

.98652863221099E-17

-.65588482566393E-17

.13904354298525E-17

.68650465547862E-17

-.86742258955936E-17

.86384038796786E-17

10 16

10 18

10 20

10 22

10 24

10 26

I0 28

12 12

12 14

12 16

12 18

12 20

12 22

12 24

12 26

12 28

14 14

14 16

14 18

14 20

14 22

14 24

14 26

14 28

16 16

16 18

16 20

16 22

16 24

16 26

16 28

18 18

18 20

18 22

18 24

18 26

18 28

20 20

20 22

20 24

20 26

20 28

22 22

22 24

22 26

22 28

24 24

24 26

24 28

26 26

26 28

28 28

-.99725614288160E-17

.97926100170970E-17

-.11697079004533E-16

.11064906979244E-16

-.10859783701640E-16

.92689314290929E-17

-.48567493496756E-17

.12282073009362E-16

-.12991524441965E-16

.15048974207966E-16

-.13093816244968E-16

.14173449313260E-16

-.12370381360868E-16

.13722901324308E-16

-.13095558008867E-16

.98763727647548E-17

.15790424642680E-16

-.16811021070720E-16

.14689051839059E-16

-.12270514883256E-16

.I0833472257364E-16

-.12222162085146E-16

.15182178471157E-16

-.13382477505778E-16

.19822001805150E-16

-.16843799924431E-16

.16975282572324E-16

-.13812015790649E-16

.15741741509831E-16

-.16229028762581E-16

.14763762496582E-16

.17022171205191E-16

-.17601080121954E-16

.16267221370710E-16

-.15007124172032E-16

.14882671779542E-16

-.10987068174600E-16

.25936077118387E-16

-.22780966672889E-16

.22121704419582E-16

-.14808343656958E-16

.64571107136990E-17

.23449769693599E-16

-.20347548319296E-16

.15290872533794E-16

-.47921576485707E-17

.23556131496919E-16

-.17426574103048E-16

.99472024892936E-17

.22332943556028E-16

-.12834742986458E-16

.24855275414208E-16

Table 2. GEM-TI covarlance matrix dements for the even zonal harmonic coefficients:

O_ is the (11,/2) dement of P
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given orbit, is solely determined by the values of the correlation coefficients Pa,, O,i, fl,i. Second,

since the quadric surface is the locus of the (I-sigma) injection error bounds, the only meaningful
: Z.

quadric in the present context is an ellipsoid, because only then are the errors finite. In this ease,

any triplet (oa, o,, 0,) from the solution space belongs to the interior of the ellipsoid.

There are two major consequences to these observations. The first is that the requirement that

(20) be _ enips0idplaces a:res_e_on on the _ssible vflues of the correlation coefficients.

The second is that the complete specification of the error space requires the specification of the

semi-axes and the orientation of the ellipsoid, or, what amounts to the same, the eigenvalues and

the eigenvectors associated with (20). Although theoretically clear, this way of specifying error

bounds turns out to be impractical because these error bounds are correlated. It would be more

desirable to specify the error bounds in terms of a parallelepiped instead. In that ease, the error

space can be characterized completely through the inequalities

lam-dl <0°

Iem- d l <-o,

IL"+d-_l :;0:

(21)

in terms of mutualiy independent error bounds Oo' o,, oi. We will now see how the method of

equal influences can be used to achieve this.

2.2.2.1. Zero Correlation Analysis Application of the method of equal influences to equation

(20) requires that all six terms on the r.h.s, have the same value. However, this is generally

impossible because the constraints thus put on the coefficients of the quadric can only be satis-

fied under special circumstances. This leads to the ancillary assumption that the correlation

coefficients be all zero, that is Pa, = P,/= P,i = 0. From the positive definiteness of the covariance

matrix Pit then f0110WS that equation (20)indeed defines an ellipsoid. The _lution of the in-

verse problem is therefore given by

2o2.
_=

(3f'/aj P _,1) ½

0,=

0i=
OT½

(22)
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It is interesting to note that, as may be easily verified, (22) is also the solution to the problem

of finding the semi-sides of the parallelopiped of maximum volume inscribed in the ellipsoid

defined by (20), centered at the origin of the o,, o,, orcoordinates, and with faces parallel to the

coordinate planes. Such a geometric interpretation of the result (22) provides an acceptable

justification for adopting the Method of Equal Influences for the solution of the inverse problem

in the Theory of Errors in terms of standard deviations. Using the full covariance (see Table

2), the solution is the following

I al <26.98 km

lael < 0.188

la/I <o.121 deg

(24)

It can be seen that using the method of equal influences and including the effects of correlations

existing among the even zonal harmonics of the GEM-T1 geopotential solution has significantly

increased the allowable injection errors, compared with the results of the previous section.

In the following the full covariance matrix for the even zonal GEM-T1 coefficients will be used

(see Table 2).

2.2.2.2. Full Correlation Analysis The geometric interpretation of the equal influences solution

as an error box of maximum volume can be used to extend the method to the case of non-zero

correlation coefficients; that is, Pa,, Pai, P,i # 0. The solution space in this case can be defined

to be the parallelepiped with the same characteristics as before, only that it cannot be determined

analytically, and numerical optimization techniques must be used.

In order to find this solution, the values of the correlation coefficients are needed. If this in-

formation is missing, as in the present case, the correlation coefficients can be considered as

parameters, and a solution can be determined for an exhaustive set of combinations of their

values. Since the value of any correlation coefficient belongs to the interval [ -1,1], a solution

was computed for each combination of values of po, P,,i, Pei from this interval at increments of

0.2, excepting combinations for which the quadric had negative etgenvalues.

u
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Rather than giving the full list, the results obtained will be compressed into the following sta-

tistics:

]Aa [ _<29.70:1:10.20 km

[Ae[ < 0.202 + 0.068

[At'[ <0.117:1:0.028 deg

(25)

where the mean and the dispersion about the mean are shown.

It can be seen that the mean values of the error bounds, when the correlation coefficients are

non zero, do not differ appreciably from the case of zero correlations. Also, varying the corm-

Iation values does not produce large dispersions about the means.

It must be realized that the error bounds given by the method of equal influences can be quite

conservative and that if two of the elements have zero or negligible errors, then the error in the

third element can be effectively increased by a factor of "_'. For instance, if the bounds on Aa

and Ae are set respectively at 10 kin and 0.004, which seem to be routinely attainable accuracies,

then the upper bound in the inclination error rises to 0.21 degrees, with a dispersion of 0.01

degrees.
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3. Summary and Conclusions

The goal of the Lageos l/l.,ageos 11I experiment is the measurement of the precession of the

average node of the two-satellite configuration with such an accuracy as to permit the recovery

of the general relativistic Lense-Thirring'precession. This work addresses the problem of estab-

lishing the bounds for the orbit injection errors of Lageos III based solely on the covariance of

the even zonal harmonics of the gravitational field of the Earth. The criterion used is a 3%

uncertainty in the Lense-Thirring precession.

The solution is found by accounting for the statistical properties of the gravitational coefficients

of the GEM-T1 field in a progressively more refined way.

It is thus found that the restrictive limits of expression (16) imposed by an analysis based on the

propagation of the maximum error are relaxed by a little more than an order of magnitude (see

(24)) when they are computed in terms of standard deviations using the full covartance for the

even zonal coefficients of GEM-T1 and the injection errors are assumed to be uneorrelated.
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Parameterizing the solution with the correlation coefficients of the three orbit injection errors

yields average error bounds close to the ones corresponding to the zero-correlation case. In

particular, the inclination error bound is centered at 0.12 degrees with a dispersion of 0.03 de-

grees due to all the possible combinations of correlations with the semi-major axis and eccen-

tricity errors. However, if the bounds on the semi-major axis and the eccentricity can be set to

10 km and 0.004, respectively, then the bound on the inclination increases to 0.21 degrees with

a negligible dispersion.
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